
An Implementation Approach of the Gap Navigation

Tree Using the TurtleBot 3 Burger and ROS Kinetic

Master Thesis
for gaining the academic degree

Master of Science in Engineering (MSc)

Vorarlberg University of Applied Sciences
Computer Science � Software and Information Engineering

Advisor
Dr. Ralph Hoch
Prof. (FH) Dr. Hans-Joachim Vollbrecht

Submitted by
Daniel Thomas Groÿ, BSc
Dornbirn, December 2020

Acknowledgements

I would like to thank everyone who supported me throughout the thesis in one way or
another. Many thanks to my advisors Dr. Ralph Hoch and Prof. (FH) Dr. Hans-
Joachim Vollbrecht for their help through the thesis. Finally, I want to thank my family
who supported me during the entire course of my studies, and without whom this would
not have been possible.

I

Kurzreferat

Die Erstellung eines räumlichen Modells der Umgebung ist eine wichtige Aufgabe, um
das Planen einer Route durch die Umgebung zu ermöglichen. Abhängig von der Anzahl
der Sensoren sind verschieden Arten der Erstellung eines räumlichen Modells möglich.
Diese Arbeit stellt einen Implementierungsansatz des Di�erenz Navigation Baum vor,
welcher für die Verwendung mit Robotern konzediert ist, welche nur eine Limitierte
Anzahl von Sensoren besitzt. Der Di�erenz Navigation Baum ist eine Baum Struktur,
welche auf Tiefensprüngen basiert, welche aus den Daten eines Laser Scanner ermit-
telt werden. Unter Verwendung des Simulierten TurtlebBot3 Burger und ROS Kinetic
wird ein Programmiergerüst entwickelt welches die Theorie des Di�erenz Navigation
Baum umsetzt. Das Programmiergerüst ist so aufgebaut, dass eine Verwendung mit
verschieden Robotern und Sensoren möglich ist. Dies wir erzielt in dem die Erkennung
der Tiefensprünge getrennt von der Konstruktion und Aktualisierung des Di�erenz Nav-
igation Baum erfolgt.

II

Abstract

The creation of a spatial model of the environment is an important task to allow the
planning of routes through the environment. Depending on the number of sensor inputs
di�erent ways of creating a spatial environment model are possible. This thesis intro-
duces an implementation approach of the Gap Navigation Tree which is aimed for usage
with robots that have a limited amount of sensors. The Gap Navigation Tree is a tree
structure based on depth discontinuities constructed from the data of a laser scanner.
Using the simulated TurtleBot 3 Burger and ROS kinetic a framework is created that
implements the theory of the Gap Navigation Tree. The framework is structured in
a way that allows using di�erent robots with di�erent sensor types by separating the
detection of depth discontinuities from the building and updating of the Gap Navigation
Tree.

III

Contents

List of Figures VII

1. Introduction 1

1.1. Problem Statement . 1
1.2. Aim of the Work . 1
1.3. Methodological Approach . 1
1.4. Structure of Work . 2

2. Technical Background 3

2.1. ROS . 3
2.2. TurtleBot . 4
2.3. Gazebo . 5
2.4. Mapping . 5

2.4.1. Map Representation . 5
2.4.2. Localisation . 7
2.4.3. Simultaneous Localisation and Mapping (SLAM) 8

2.5. Navigation . 9

3. Related Work 11

3.1. Real-Time Indoor Mapping for Mobile Robots with Limited Sensing . . . 11
3.2. Gap Navigation Tree . 12

4. Concept 17

4.1. Limitations of the Gap Navigation Tree 17
4.2. Software Structure . 18

4.2.1. Detection of Depth Discontinuities 18
4.2.2. Detection Critical Events and the Movement 21
4.2.3. Tree Construction . 21
4.2.4. The Complete System . 21

5. Implementation Details 23

5.1. Detection of Depth Discontinuities . 23
5.1.1. Input Data and Its Structure . 23
5.1.2. Depth Discontinuity Detection and Filtering 24
5.1.3. Veri�cation . 30
5.1.4. Published Data and Its Structure 31

5.2. Critical Events and Discontinuity Movement 31
5.2.1. Input Data and Its Structure . 32

V

5.2.2. Detection of Critical Events and Discontinuity Move 32
5.2.2.1. Match the Rotation . 32
5.2.2.2. Match the Forward and Backwards Movement 33
5.2.2.3. Match Drift While Still Stand 34
5.2.2.4. Di�erentiation Between Move, Merge and Disappear . . 34
5.2.2.5. Di�erentiation Between Split and Merge 35

5.2.3. Published Data and Its Structure 36
5.3. Tree Construction . 37

5.3.1. Events Messages Processing . 37
5.3.2. Published Data and Its Structure 38

5.4. The Complete System . 38

6. Results 40

7. Discussion and Conclusion 50

7.1. Critical Re�ection . 50
7.2. Limitations . 50
7.3. Future Work . 51

Bibliography 52

Statutory Declaration 55

Appendices 56

A. Listings of chapter 4 57

B. Listings of chapter 5 59

VI

List of Figures

2.1. Environment in continuous representation [SNS11]. 6

2.2. Environment in continuous-valued line representation. a) real map. b)
representation with a set of lines [SNS11]. 6

2.3. Environment in exact cell decomposition [SNS11]. 7

2.4. Environment in �xed decomposition [SNS11]. 8

2.5. Environment in occupancy grid [SNS11]. 9

2.6. Environment in variable cell decomposition [SNS11]. 9

2.7. Environment in topological decomposition [SNS11]. 10

3.1. Example environment which is a hallway in an o�ce building [Zha+10]. . 11

3.2. Environment representation before correction and after correction [Zha+10]. 12

3.3. On the left side the environment is shown with the robot being the black
dot, blue is the area that can be seen by the LIDAR and the black dotted
lines are the laser beams detecting a depth discontinuity. The circle on
the right represents the 360◦ view with the detected depth discontinuities
[TML07]. 13

3.4. Environment with two di�erent types (a)soft edge, b)edge) of boundaries
causing depth discontinuities [TML07]. 14

3.5. From a) to d) the four di�erent critical events appearence, merge, dissap-
pearence and split are shown with its inpact on the tree [TML07]. 15

3.6. Ilustration how the tree gets built while the robot moves through the
environment [TML07]. 16

4.1. Direction of LIDAR reading. 19

4.2. False detection of depth discontinuities due to the perspective when being
close to the wall and the wall being long. 20

4.3. Overview of how the di�erent tasks connect to each other. 22

5.1. Connections of the node depth_jumps_sensor to the TurtleBot 3. 24

5.2. Detection of depth discontinuities based on the implementation in Listing
B.4. a) shows the raw measurement with the measurements indicating a
discontinuity highlighted. b) shows the results of the absolut di�erence
between the consecutive measurments and highlights those exceeding the
threshold of 0,4. c) shows the resulting depth discontinuities marked with
a 1. 26

VII

5.3. Detection of depth discontinuities based on the implementation in Listing
B.5. a) shows the raw measurement with the measurements highlighted
indicating an discontinuity. b) shows the results of the absolut di�erence
between the consecutive measurments and highlights those exceeding the
threshold of 0,4. c) shows the resulting depth discontinuities marked with
a 1. 27

5.4. Recording of false detection for discontinuities_single_scan discontinu-
ities_two_scans . 28

5.5. Test environment for the perspective problem during depth discontinuity
detection. The robot is positioned in the bottom left corner. A rotation
to the right produces the output shown in Figure 5.4. 28

5.6. Movement of the discontinuities depending on the robot movement. The
robot movement is drawn in red. Blue is the depth discontinuity at time t.
Green is the depth discontinuity at time t+1 and the movement direction
of discontinuity. 29

5.7. The node gap_sensor subscribes to the topic depth_jumps of the node
depth_jumps_sensor . 32

5.8. Move and merge in comparison and the parameters from Listing B.18 . . 35
5.9. Appear and split in comparison and the parameters from Listing B.19 . . 36
5.10. The node gap_navigation_tree subscribes to the topic collection_critical_and_moved

of the node gap_sensor . 37
5.11. Visualisation how the tree is stored in the node gap_navigation_tree . . 38
5.12. All nodes and the communication between them. 39

6.1. Environments used to test the framework. 41
6.2. Rotation test 1 in environment 6.1.b . 42
6.3. Rotation test 2 in environment 6.1.b . 43
6.4. Forward driving in environment 6.1.b . 45
6.5. Driving in environment 6.1.a. 46
6.6. Results from driving from F to H and back to F in the environment shown

in Figure 6.5 . 48
6.7. Resulting graph after moving around in the complex environment from

Figure 6.1.c. 49

VIII

Listings

6.1. Average processing time of one LIDAR scan and discontinuity reading for
the simple and complex environment. 47

A.1. The changed turtlebot3_burger.gazebo.xacro �le to extend the laser range. 57
A.2. The changed turtlebot3_burger.gazebo.xacro �le to increase the update

rate. 58

B.1. De�nition of the ROS LaserScan message 59
B.2. Calculation of the robots yaw. 60
B.3. De�nition of the ROS messages Twist and Vector3 60
B.4. Implementation depth discontinuity detection using a single scan. 61
B.5. Implementation depth discontinuity detection using a two scans. 61
B.6. Checking for neighbour discontinuities to prevent false detection. 62
B.7. Algorithm to update the depth discontinuities. 63
B.8. Con�guration for the correction of forward and backward movement. . . 64
B.9. Algorithm which matches the depth discontinuities at t with t− 1. 65
B.10.Algorithm to for tracking and veri�cation of depth discontinuities. 65
B.11.ROS message de�nishen for publishing the depth discontinuity information. 66
B.12.Algorithm deciding what action to perform. 66
B.13.Algorithm to decide how to iterate over the array. 66
B.14.Algorithm to match the rotation. 67
B.15.Algorithm how the forward and backward movement is matched. 68
B.16.Algorithm for checking from current index into positive direction. 69
B.17.Algorithm for checking from current index into positive direction. 70
B.18.Algorithm for checking for move, merge or disappear. 71
B.19.Algorithm for checking for move, merge or disappear. 71
B.20.ROS message for publishing the critical events. 72
B.21.ROS message for publishing the move of discontinuities. 72
B.22.ROS message to publish the critical events together with the moves. . . . 72
B.23.De�nition of the tree node in Python. 72
B.24.Working de�nition of the tree node as a ROS message. 73
B.25.Python de�nition of tree node from Listing B.23 transferred directly to

ROS. This de�nition does not work due to the restriction that custom
messages do not have a default value. 73

IX

1. Introduction

Navigating from one place to another and remembering the environment is no problem
for many kinds of animals and humans. The information they use is not necessarily accu-
rate or quantitatively, they de�ne the space by remembering a few landmarks [YJC12].
Navigating through an environment is an important task for mobile autonomous robots
[Thr02]. To be able to plan a route and navigate from point A to point B they need a
representation of their environment like humans and animals do. The representation of
the environment allows the robot localise itself in the environment, plan the route and
then navigate. The abilities of the robot de�ne how a spatial model can be constructed
and also how accurate this spatial model is.

1.1. Problem Statement

Assuming a robot has only a very limited sensing ability. Let the robot have a LIDAR
sensor and the ability to know if it is driving forward or backwards and if it is rotating
clockwise or counter-clockwise. It does have the local odometry information to determine
the local x and y position in the environment and orientation. The robot shall be able
to create a local spatial model so once it has discovered his environment, it is able to
plan routes from A to B.

1.2. Aim of the Work

The aim of the work is to create a Robot Operating System (ROS) framework which
allows a robot with limited sensing capabilities the construction of a spatial model. It is
assumed that the robot has a Light Detection and Ranging (LIDAR) sensor, the ability
of detecting if it is turning clockwise or counter-clockwise and knows if it is driving
forwards or backwards. For this purpose, the TurtleBot 3 Burger platform is chosen.
The implemented framework shall be implemented in a way that it consists of multiple
ROS nodes. This shall allow easy adaption to di�erent sensors which returns spatial
information.

1.3. Methodological Approach

First a ROS node was implemented which extracts the valuable information from the
environment and makes this information available to other ROS nodes. After having the
valuable information, a second ROS node was created which takes the information from

1

the �rst ROS node to analyse it and extract the information which allows to create a
spatial model of the environment. The third ROS node then takes the information from
the second ROS node and creates the spatial model which again is made available for
other ROS nodes.

1.4. Structure of Work

In Chapter 2 the reader is introduced to basics of robotics. The robotic framework ROS is
explained as well as the used robot TurtleBot 3 Burger and the used simulation software.
Furthermore, an introduction to mapping and navigation is given. Chapter 3 discusses
theories and implementation approaches which use limited sensing to create a spatial
model of the environment. The concept for the implemented framework is discussed in
Chapter 4. It introduces the foundations which are then implemented in Chapter 5.
In Chapter 6 the accuracy and robustness of the implemented framework is discussed.
This is done by de�ning some test environments and driving the robot through those
environments while running the implemented framework. The last Chapter 7 discusses
the implemented framework with its limitations and also what needs to be improved in
the future.

2

2. Technical Background

This chapter discusses information necessary for understanding the remainder of this
thesis. In the following sections, important terms are de�ned and explained. First the
framework used to develop the software is explained, followed by the robot used and
the simulator for it. Furthermore, the terms mapping, localisation and navigation are
de�ned and explained.

2.1. ROS

Robot Operating System (ROS) is the used system for the communication, speci�cally
the version kinetic [Fou18]. When reading Operating System, one might think of process
management and scheduling, which is not the case for ROS [gee20]. ROS is a framework
which makes it possible to decentralise the control of the robot and encourages the
development of reusable code by separating the software into small modules called nodes.
The idea is to separate the computing machines into onboard machines and o�board
machines where those nodes are run [Adn15][Qui+09]. O�board machines are the nodes
not located on the robot and onboard machines are those that are located on the robot.
The connection between the onboard and o�board machines is usually established using
WiFi.
ROS makes development of software for the robot possible in multiple languages in-

stead of being restricted to a single programming language. Supported languages are
C++, Python, Octave and LISP [Qui+09]. Robot software development is done by cre-
ating software modules, the so called nodes, which are ideally designed for one speci�c
task. The modules are called nodes because because several nodes communicating with
each other can build a graph network. The developed nodes can run on an o�board
machine or onboard machine. An onboard machine for example can be a Raspberry Pi
mounted on the robot. Due to the limited computing power of a Raspberry Pi it is not
suited for computational heavy tasks. Therefore, on the robot only nodes will run that
run tasks which does not require high computing power. Such a task can be controlling
the motors, reading the sensor data. Computational more expensive tasks, for example,
image processing might be better suited for an o�board machine because there is more
computing power is available.
ROS enables easy data exchange between nodes and o�ers multiple possibilities to im-

plement communication between them. The possible communication methods between
nodes are topics, services and actions. Topics are a publisher and subscriber commu-
nication method. Multiple nodes can subscribe to a topic or publish to a topic. This
method of communication is asynchronous, because there is no communication between

3

publisher and subscribers which ensures that a message was received. For a function
like behaviour ROS o�ers the service functionality to communicate with other nodes.
A node can o�er one or multiple services for other nodes to be called. The service de-
�nes the information it requires and the response after processing the request. So far,
the mentioned communication possibilities do not have the option to interrupt or get
information about the processing status. The so-called actions o�er the functionality
of interruption and feedback. The action server which o�ers the action functionality
can give the calling node feedback during processing. Another functionality the other
communication method does not have is the possibility to cancel the request during it
is already being processed.

For the communication between the nodes messages are used which are de�ned by
msg-�les. The used description method is done using a language-neutral Interface De�-
nition Language (IDL) [Qui+09]. Each msg-�le contains number of �elds and each �eld
is de�ned by a datatype and name. This allows ROS to support cross-language devel-
opment. There are pre-de�ned datatypes, but it is also possible to use another message
as the data type. From this de�nition native implementations are generated by a code
generator for each supported language. Actions and services also have IDL descriptions.
The description of a service contains de�nitions how the semantic description of the
message is setup. For the action the description has three section consisting of the goal
de�nition, result de�nition and feedback.

ROS also has a powerful development toolset which contains tools for debugging,
introspection, plotting and visualisation of the state of the system to name a few of
them. All core functionality and introspection tools can be used from the command
line from remote without a Graphical User Interface (GUI). Rviz is one of the graphical
tools provided by ROS [Ope20a][Ope20c]. The tool can visualise the robot itself, sensor
data in two-dimensional (2D) and three-dimensional (3D) space and camera images.
Another tool provided by ROS is rqt, which is based on the Qt framework and allows
the development of a GUI for the robot [Ope20a][Ope20b]. It comes with a library of
plugins that can be used to create an interface that visualises various data of the robot.
If no standard plugin �ts the needs it is also possible to write custom plugins.

2.2. TurtleBot

In this thesis the mobile robot TurtleBot 3 Burger is used. The TurtleBot 3 Burger is
chosen because it ful�ls the minimal sensor requirements for this thesis and the platform
is designed to be used with ROS. Furthermore, the familiarity with it due to the use
in lectures at Vorarlberg Applied Science University is a plus. It was designed for
use in education, research, hobby and product prototyping and is small and a�ordable
[ROB20c]. The robot is equipped with two motors which each driving one wheel, a
Light Detection and Ranging (LIDAR) sensor, gyroscope, acceleration sensor, 3-axis-
magnetometer and a Raspberry Pi [gen20b]. With its two separately driven wheels it
is classi�ed as a di�erential wheeled robot. Changing the direction is done by letting
the wheels turn with di�erent speeds [ASN09]. With the LIDAR sensor the robot can

4

detect obstacles with a maximum distance of 3,5m. The sampling rate of LIDAR is
1,8kHz [gen20a]. Development is done using the simulator and the simulated TurtleBot
3 Burger. The needed �les to simulate the TurtleBot 3 Burger with Gazebo are provided
with the ROS installation [ROB20a].

2.3. Gazebo

In this thesis a simulator is used to develop the software without requiring a physical
robot and a place to set up a test environment. Simulators can provide the developer
with virtual version of a real robot or a theoretical physical system [KN11]. Further-
more, a simulator allows direct debugging, which is also mentioned as a bene�t by Laue
et al.[LSR06] and Afzal et al.[Afz+20]. When working with a simulator it is important
to know that they cannot represent physical reality and therefore have a gap between
simulation and reality because the simulator is an abstraction of the reality [Afz+20].
The simulator used in this work is Gazebo [Ope14a]. Gazebo is the primary simulator
when working with ROS and is integrated in ROS by providing a set of Gazebo plugins
which allow ROS to communicate with the simulator [Rob20]. Gazebo comes with a list
of pre-de�ned models (see [Fou14]). The pre-de�ned models include various robots and
other elements like a wall or a door which can be used to create a test environment.
Gazebo supports building custom models by the means of providing an editor with a
graphical editor to create own models [Ope14b]. A more advanced method of creating
and editing models is using the Uni�ed Robotic Description Format (URDF) and the
Simulation Description Format (SDF) [ROB20b][Fou20]. The URDF speci�es the kine-
matic and dynamic properties of the robot. To describe joint loops (parallel linkages),
friction and other properties the SDF is used. A simulation also needs an environment
which Gazebo calls a world. For this purpose, Gazebo comes with a building editor
which is a graphical interface to create worlds.

2.4. Mapping

The problem of acquiring a spatial model of a physical environment is called mapping. To
build a truly autonomous mobile robot, mapping is one of the most important problems
that need to be solved. Enabling the robot to navigate through its environment is a
common use case. Navigation often comes with the requirement of localisation, which
requires a spatial model of the physical environment [Thr02]. Therefore, mapping needs
to deal with the selection of the right map representation, localisation and loop closing
which will be explained brie�y in the next three sections.

2.4.1. Map Representation

The representation of the environment can be done using di�erent decomposition tech-
niques. These techniques include exact decomposition, cell decomposition, �xed decom-
position, adaptive decomposition or topological decomposition. The di�erent techniques

5

di�er in the amount of detail the map contains and the complexity of it. An example
for the exact decomposition is the continuous-valued map, where the features of an
environment can be precisely annotated in continuous space. However, this type of rep-
resentation is only suitable for 2D representation since the computational complexity
explodes with an additional dimension. A map using continuous representation with
polygons as environmental obstacles is shown in Figure 2.1.

Figure 2.1.: Environment in continuous representation [SNS11].

A simpler approach of continuous representation is a continuous-valued line repre-
sentation. The features in the environment are represented as straight lines. This can
be achieved using line extraction where a line is �tted through several points. Figure
2.2 shows an example of continuous-valued line representation. In a) the real map is
shown and in b) the continuous-values line representation. Note that in b) the captured
features are those that can be represented with straight lines such as those found at
corners and along walls.

Figure 2.2.: Environment in continuous-valued line representation. a) real map. b)
representation with a set of lines [SNS11].

An example for exact cell decomposition is shown in Figure 2.3. For this type of map
representation, the given space is separated into areas with free space. In this example
the obstacles are polygons and the vertical lines are drawn so they touch a corner of the

6

polygon. Each free space can be represented as a single node and therefore results in a
very compact representation. It is assumed that the robot does not need to know the
exact position within the free area. Instead, the ability of the robot to move from one
free space to the next adjacent free space is of interest and can be achieved with the
resulting graph.

Figure 2.3.: Environment in exact cell decomposition [SNS11].

Using �xed decomposition, one gets a discrete approximation of the real environment.
Figure 2.4 shows an example of a �xed decomposition. The occupancy grid, shown in
Figure 2.5 is a popular version of the �xed decomposition. Its accuracy depends on the
resolution of the grid. If the resolution is chosen too low narrow passageways might
disappear.

The adaptive decomposition approach tries to create cells that are as large as possible.
The algorithm starts with one large cell which will be broken down until it only contains
one type (free or obstacle). An adaptive decomposition example is given in Figure 2.6.

The last decomposition option is the topological decomposition. Figure 2.7 illustrates
the topologic map of an indoor o�ce space. The topologic map does not use direct
measurements of the environment to gain geometric information and store it. Instead it
searches for characteristics in the environment that are most important to localise the
robot. The representation is a graph built of nodes which represent areas in the world
with certain characteristics. Two areas that are connected and can be traversed by the
robot are denoted by two nodes connected by a arc. In the given example of Figure 2.7
a sensor was used to �nd intersections between halls and rooms [SNS11, p284-293]. All
those di�erent decomposition techniques have di�erent advantages and disadvantages
and therefore di�erent usages.

2.4.2. Localisation

Localisation is an essential ability during the process of getting a representation of the
environment and navigating through the environment. The localisation is the process of
determining the position in the environment. It typically uses the robots odometry and

7

Figure 2.4.: Environment in �xed decomposition [SNS11].

exteroceptive sensors (e.g. ultrasonic, laser, vision sensor). When the robot starts mov-
ing from a precisely known position, then the current position during the movement can
be tracked using the robot's odometry. Inaccuracy of the odometry causes the position
uncertainty to grow as movement progresses. Localisation of the robot in relation to its
environment map prevents the uncertainty from growing because with the information
from the exteroceptive sensor in combination with the odometry information the robot
is then able to localise itself as well as possible in the environment [SNS11, p.296-299].

2.4.3. Simultaneous Localisation and Mapping (SLAM)

Simultaneous Localisation and Mapping (SLAM) is the process of learning a map and
at the same time determining the position of the robot. Loop closure is a problem
that arises throughout the SLAM process. As heard before when creating a map, it is
important for the robot to know where its position in the environment and therefore
on the map is. So, when driving and mapping the environment the robot probably will
come to a place where it has been before. The robot should then be able to recognise
that it has visited that place before. This knowledge can then be used to correct the
map [SNS11, p.348�].

8

Figure 2.5.: Environment in occupancy grid [SNS11].

Figure 2.6.: Environment in variable cell decomposition [SNS11].

2.5. Navigation

The challenge of �nding a way to a desired destination is called navigation. For �nding a
way to a desired destination the robot needs to know where it currently is (localisation),
where it needs to go (goal) and how it gets there (path). The goal can be any position
in the environment. With the current position and the goal, a path needs to be found
to get from the current position to the goal. When a path was found the robot needs
to follow that path. While following the path the robot needs to react on unforeseen
events, for example there could be an obstacle it was not aware while planning the route
[SNS11][TB96].

9

Figure 2.7.: Environment in topological decomposition [SNS11].

10

3. Related Work

Only little other work use the approach of having a robot with limited sensing and lack of
knowledge of the exact position [Zha+10] [TML07]. This chapter discusses approaches
which rely on robots with limited sensing capabilities to create a spatial model.

3.1. Real-Time Indoor Mapping for Mobile Robots

with Limited Sensing

Zhang et al.[Zha+10] propose an approach for creating a map of an indoor environment
with a robot that only has a few sensors. The used robot is the iRobot Create. It can
measure the driven distance, a odometry for estimation purpose of the wall position and
the angle turned, a wall sensor on the right side to measure the distance to the wall and
two bumper sensors, that are located on the front left and front right side. With the wall
sensor having a range of under 10 cm and the bumper sensors being short-rang sensors.
The result of their mapping is the outline of the environment as shown in Figure 3.1. In
a) snapshot of the hallway being mapped is shown and b) shows the �oor plan with the
area to be mapped being coloured.

Figure 3.1.: Example environment which is a hallway in an o�ce building [Zha+10].

They use a wall-following behaviour to explore the indoor environment and generate
the outline. Due to the noise in the odometry its data is only used as an estimation

11

of the wall position instead of using it as the actual position of the robot. To correct
the estimation, they make use of the pre knowledge that the environment consists of
straight walls and rectilinear corners. With this knowledge they perform a recti�cation
of the raw odometry angles by classifying them into multiples of π/2. To prevent errors
caused by small furniture or chairs the history of the angles is taken additionally. With
a probabilistic approach they maintain N candidate maps. If a hypothesis is consistent
with the input data, it gets a higher probability to be the correct one. Figure 3.2 shows
two versions of the obtained outline. In a) the non-corrected version of the outline is
shown and in b) the corrected version of the outline. To be able to perform loop closing
they introduce the Accumulated Turn Counts (ATC). It sums up all the left and right
turns to the current distance with a left turn being 1 and a right turn being �1. A loop
is indicated by the ATC when it is high positive or low negative.

Figure 3.2.: Environment representation before correction and after correction
[Zha+10].

3.2. Gap Navigation Tree

Tovar et al.[TML07] propose the Gap Navigation Tree (GNT) which is a tree like struc-
ture created with one sensor that tracks depth discontinuities. The sensor described
is an abstract sensor which can detect discontinuities in depth and tracks them with
a so-called gap sensor that has an in�nite range. The GNT is then constructed from
the information of the sensor. Tovar et al.[TML07] use a robot which is modeled as
point with no dimensions. They claim that its abstract sensor can be implement with
a variety of sensors such as a laser range �nder, sonar, camera or with another sensing
system with whom it is possible to detect depth continuities. The gap sensor returns a
sequence of gaps denoted as G(x) = [g1, . . . , gk]. Where the gap is a notion for a depth
discontinuity. With the environment being R ⊂ R2, G(x) represents the sequence at
x ∈ R. G(x) is a cyclic ordering if x lies in the interior of R. The cyclic ordering allows

12

Figure 3.3.: On the left side the environment is shown with the robot being the black
dot, blue is the area that can be seen by the LIDAR and the black dotted
lines are the laser beams detecting a depth discontinuity. The circle on the
right represents the 360◦ view with the detected depth discontinuities
[TML07].

statements such as [g1, g2, ..., gk] = [g2, ..., gk, g1]. Figure 3.3 shows an environment on
the left and the resulting gaps on the right with the robot being the black dot. The gaps
can be caused by soft edge boundary or a edge boundary (see Figure 3.4). If the robot
moves along a soft edge boundary like in a) the gap will move clockwise. A gap caused
by a edge as shown in b) will stay at the same position.

A gap appearance to the left of x is de�ned the same way. During gap detection
each gap g1 ∈ G(x) with x ∈ R gets its unique label. Besides a unique label the
gap does not contain any other information. If the robot moves only a small amount
no change in the sequence will happen. The appearance, disappearance, merging or
splitting of a gap are fundamental changes and can occur occasionally. A appearance
will occur in the beginning when the detection starts and no information is available.
The disappearance occurs if the robot for example approaches a gap that is caused by
the edge of a protrusion and the robot moves into it. The merge occurs when an edge
causing a gap covers another edge which also causes a gap. In case of a split the robot
drives towards an edge if the robot is close enough another edge appears behind the
approached gap. A gap that appears will always get a new unique id even if it was a gap
that has been tracked before, disappeared and later gets detected again. The control of
the robot is de�ned by a gap chasing motion chase(g) with g ∈ G(x). This motion is
a combination of a rotation and forward movement. A rotation is performed to align
the robot with the gap. When the robot is aligned with the gap it moves towards it in
a straight line. The chase(g) terminates when the chased gap disappears. To construct
the gap navigation the previous mentioned events of appearance, disappearance, merge
and split are used. The four di�erent events appear, disappear, merge and split are
shown in Figure 3.5.

Based on these four events the GNT is constructed incrementally as the robot moves
along a path τ . The root vertex represents the robot and each detected gap is then
represented as a leaf vertex of the root vertex. An update of the GNT is performed
when one of the critical events occurs. When a new gap g appears a new child vertex

13

Figure 3.4.: Environment with two di�erent types (a)soft edge, b)edge) of boundaries
causing depth discontinuities [TML07].

g is added to the root vertex. If a gap g disappears the vertex g gets removed from
the root vertex if it is a leaf vertex. When two gaps g1 and g2 merge into g the two
vertices g1 and g2 become children of the new vertex g. The vertex g is then added to
the root as a child. If a gap g splits into g1 and g2 two di�erent scenarios are possible
which are creating new vertices or using the existing ones. The �rst is when vertex g has
two children g1 and g2. In this case vertex g1 and g2 become a child of the root vertex
and the vertex g gets removed. If the vertex g has no children two new vertices g1 and
g2 are created and added to the root vertex. The vertex g gets removed from the root
vertex. When adding a vertex or vertices the cyclic ordering must be preserved. Figure
3.6 shows the process of constructing a GNT for the given example environment. The
robot and the root of the GNT are represented as a black dot. The light dotted lines in
Figure 3.6.a show the boundaries of the aspect cells.
Initially the robot detects g1 and g2 which is shown in Figure 3.6.a because it is not

sure if the gaps can split, they are drawn as circle in the tree. In Figure 3.6.b the robot
is moving towards gap g1. Now the gap g3 is detected and added to the tree as rectangle
leaf because this node cannot split due to the knowledge at the position in Figure 3.6.a.
As the robot continues to move towards gap g1 the gaps g3 and g4 merge into g4 which
is shown in Figure 3.6.c. The merged gap g4 is drawn as a circle because it is known
that this gap can split. With gap g1 disappearing in Figure 3.6.d the only gap to chase
is gap g4. Gap g4 will then split into g3 and g4 while gap g1 gets visible again for the
robot Figure 3.6.e.
Now the gap g1 is visualised as a rectangle because it is known that it can't split. The

robot will continue with moving towards g2 because it is uncertain if the gap can split
or not. When chasing gap g2 the gap g3 will disappear and g5 will appear as it is shown
in Figure 3.6.f. Gap g2 will disappear because the robot is now at the position where g2
was. If the robot now would move back towards g1 the gap g2 would be visualised as a
rectangle because it is known that it can't split.

14

Figure 3.5.: From a) to d) the four di�erent critical events appearence, merge,
dissappearence and split are shown with its inpact on the tree [TML07].

15

Figure 3.6.: Ilustration how the tree gets built while the robot moves through the
environment [TML07].

16

4. Concept

This chapter �rst discusses limitations of the GNT found during initial experiments and
the chosen solutions. Then the structure of the software is discussed by de�ning how
the depth discontinuities can be detected, how the critical events and move events can
be detected and how the tree is constructed.

4.1. Limitations of the Gap Navigation Tree

Analysing the approach of Tovar et al.[TML07] and initial experiments showed that the
given approach has limitations that are not clear at �rst sight. As mentioned in Section
2.2, for this thesis the robot TurtleBot 3 Burger is used. The robot is equipped with
LIDAR that has a range of 3,5m. Tovar et al.[TML07] assume that the robot can see
all depth discontinuities no matter how far away they are. This makes it possible to
track a depth discontinuity until it either splits or merges. With only having a range of
3,5m the proposed concept of Tovar et al.[TML07] fails. For illustration let us assume
the LIDAR of the TurtleBot 3 Burger detects a depth discontinuity in 2,5m distance.
The robot then starts moving in the opposite direction of the depth discontinuity, which
causes the distance to the depth discontinuity getting larger. At one point the depth
discontinuity will be out of range for the LIDAR of the TurtleBot 3 Burger. Due to the
de�nition that a disappearing depth discontinuity will be labelled new if it reappears
all information connected to it gets lost. For the GNT this means every information
connected to that node in the tree is lost and therefore information of the environment.
To ful�l the requirement of not losing a depth discontinuity the environment must be

less or equal than 3,5m x 3,5m in size. As stated by Khader et al.[KC20] LIDAR sensors
can have di�erent ranges. The detection range can be up to 200 meters depending on
the type of system. To be able to test complex larger environments with the TurtleBot
3 Burger the decision was made to modify the model in the simulation. In this folder
the �le turtlebot3_burger.gazebo.xacro needs to be modi�ed. This �le gives gazebo the
information how the model needs to be simulated. Listing A.1 shows the de�nition of
the LIDAR, which needs to be changed. From line 16 to 20 the range of the LIDAR is
de�ned. Here the value of <max> needs to be changed to 10, the current value should
be 3,5. With this change the LIDAR is now simulated with a range of 10 meters.
Robot used by Tovar et al.[TML07] is modelled as a point which brings up issues when

applying the chase(g) motion to a real robot. Recall, chase(g) is the movement towards
a detected gap. It is described as "the robot rotates to align its heading with the gap and
moves forward in unit speed" by Tovar et al.[TML07]. It is added that "the robot uses
sensor feedback to continue the motion, which is guaranteed to be collision free, except

17

for tangential motions along the boundary�[TML07]. Termination of the chase motion
happens as soon as the chased gap is no longer visible. With a real robot two things
will happen. The �rst thing is that the robot will bump into the wall because of the
straight alignment towards the gap. Secondly, termination will not be triggered because
the robot will get stuck in front of the gap and therefore the discontinuity will still be
detected. The chase motion will need to consider that the chased gap must move to the
left or the right side of the robot at one point. Furthermore, it needs to perform a wall
following motion.
Another question that arises is how the width of the robot is considered during the

gap detection. A point representation of a robot will theoretically �t through every gap.
With an actual robot or simulated version of a real robot a check needs to be performed
if the robot �ts through the gap or not. For the tree it is important to only represent
gaps that the robot can �t through.
When the robot is close to a wall the search for depth discontinuity using a LIDAR

returns false gaps if the wall is long enough. This happens due to two consecutive data
points of the LIDAR having a large enough change in the detection distance. This
problem is not addressed and needs to be solved to provide valid data for the GNT.

4.2. Software Structure

This section covers the structure of the software and the task of each module contained
in the software structure. First the detection of the depth discontinuities is discussed,
followed by the detection of critical events, the construction of the tree, how to chase
gaps and �nally how the complete system looks like.

4.2.1. Detection of Depth Discontinuities

Tovar et al.[TML07] describe a very abstract sensor to detect the depth discontinuities.
In thesis the TurtleBot 3 Burger is used which comes with a LIDAR that gives the
depth information. The LIDAR of the TurtleBot 3 Burger returns a vector containing
360 distance measurements. The reading of the LIDAR is counter-clockwise with 0◦

being to the front of the robot as illustrated in Figure 4.1. Let the range data from
the LIDAR sensor be rdata, which is a vector with 360 distance measurements. The
discontinuities can be calculated by comparing consecutive distance measurements and
determine the di�erence between them. This can be expressed as

diff_single_scan =

∣∣∣∣∣∣∣∣∣∣

rdata0
.
.
.

rdata359

−

rdata1
.
.
.

rdata0

∣∣∣∣∣∣∣∣∣∣
. (4.1)

To determine the depth discontinuities a threshold can now be applied to
diff_single_scan. If the value is greater than the threshold then the value is set to 1

18

Figure 4.1.: Direction of LIDAR reading.

and otherwise to 0. The result is a vector with 0 and 1 with 1 indicating a depth discon-
tinuity at this particular angle. In section 4.1 we mentioned that there is a perspective
problem with the depth discontinuity detection proposed by Tovar et al.[TML07]. Fig-
ure 4.2 shows the simulated environment with the robot positioned close to the wall in
a). In b) the LIDAR reading is shown and in c) the detected depth discontinuities. Due
to the perspective in the distance a change of 1◦ in the angle causes a large change in the
distance measurement. If the change is larger than the threshold a depth discontinuity
is detected.
To prevent the detection of false depth discontinuities an additional method needs to

be implemented that �lters them out from the discontinuity reading. The previously
described approach uses one LIDAR scan to detect the depth discontinuities. An al-
ternative approach for detecting depth discontinuities is using two consecutive LIDAR
scans. Let rdata(t) be the current reading and rdata(t−1) the previous reading of the LI-
DAR scanner. Both are vectors containing 360 distance measurements. Then calculate
the di�erences between the two vectors

diff_two_scans =
∣∣rdata(t) − rdata(t−1)

∣∣ . (4.2)

Now we are using two LIDAR scans from di�erent time stamps and check if there is a
di�erence at the same angle from the previous LIDAR scan to the current one. After
applying the threshold value to diff_two_scan we get the depth discontinuities where
the change in distance was large enough to meet the threshold and therefore indicate a
discontinuity. With a high enough scan frequency, false depth discontinuities are not de-
tected because the reading will give an equal reading. However, with the scan frequency
of 5Hz from the TurtleBot 3 Burger the step resolution is not high enough to provide
good results. To solve this problem the model of the TurtleBot 3 Burger was edited with
a higher scan frequency. Listing A.2 shows the edited turtlebot3_burger.gazebo.xacro
�le with the update rate set to 90Hz.
The vector diff_two_scans can now be used to detect the changes of depth discon-

tinuities. With the vector diff_single_scan the depth discontinuities can be tracked
when there is no detection in diff_two_scans and to determine the exact angle of

19

(a) Environment in Gazebo

(b) Rviz visualising the LIDAR reading as

green dots.

(c) Detected depth discontinuities by the

robot.

Figure 4.2.: False detection of depth discontinuities due to the perspective when being
close to the wall and the wall being long.

20

either the near point or the distance point.
To �lter single occurring depth discontinuities, it is checked how often the depth dis-

continuity is detected. This not only prevents single occurring depth discontinuities, but
also enables robustness on dropouts of a tracked depth discontinuity. Using a threshold,
allows de�ning when a tracked depth discontinuity can be taken as valid. To be able to
de�ne in which direction the depth discontinuity should have moved, the odometry and
drive commands are used. This allows to forecast where to search for the moved depth
discontinuities from one LIDAR scan to the next LIDAR scan.
After processing the LIDAR scan and updating the detected depth discontinuities

the information is passed on. The information is provided to other modules by pub-
lishing it to a topic. Other modules can subscribe to this topic and can receive the
message consisting of a header, depth discontinuities, LIDAR scan, rotation and linear
x movement.

4.2.2. Detection Critical Events and the Movement

For the construction of the tree the four critical events appearance, disappearance, merge
and split, which are proposed by Tovar et al.[TML07], need to be detected. To be able
to detect those events the depth discontinuities of t-1 are compared with the depth
discontinuities of t. The information of the depth discontinuities can be retrieved from
the topic where the depth discontinuities are published. With the knowledge in which
direction the robot has rotated and if it moved forward or backwards allows to predict
where the depth discontinuities at t-1 should move in t. During the process of updating
the t-1 state to the state of t the four critical events can be detected. For further
processing the information about critical events and movement are published to topics.

4.2.3. Tree Construction

For the construction of the tree the module takes the information of the critical event
and movement detection. A 360◦ view of the environment is maintained with nodes
where a depth discontinuity is detected. With each event or move published the tree
gets updated. Merge events result in a new node with two childes. The same applies for
a split but the other way around. The children are placed on the top-level and if there
are none then new child nodes are created. An appearance results in creating a new
node. If a node disappears it gets removed with all its children if there are any. Again,
the updated tree is then published to a topic.

4.2.4. The Complete System

Figure 4.3 shows how the di�erent tasks connect to each other. On top is the robot
providing the sensor data (in this case LIDAR scans) and its motors that are controlled.
The depth discontinuity detection uses the sensor data and monitors the drive commands
provided to the motors. To detect critical events and the movement of gaps, the results
from the depth discontinuity detection is used. In further consequence the information

21

Figure 4.3.: Overview of how the di�erent tasks connect to each other.

gained during the detection of critical events and movement of depth discontinuities are
used to create and update the tree.
To allow the usage of di�erent sensors the depth discontinuity detection and detection

of critical events and movement are put in di�erent modules. This allows reuse of the
parts that are not speci�c to a sensor. For any sensor only the discontinuity detection
part needs to be implemented.

22

5. Implementation Details

In the previous chapter the concept of the implementation of the Gap Navigation Tree
was provided. The chapter discussed ideas which give the basis for this chapter. In
this chapter the implementation is discussed looking at the di�erent ROS Nodes. The
�rst node covered is the depth_jump_sensor which is responsible for the detection of
the depth discontinuities and veri�cation that the occurred depth discontinuities were
detected more than once. This is followed by the gap_sensor node which detects the
critical events and move events. With the information gained by the gap_sensor the
node gap_navigation_tree constructs and updates the tree.

5.1. Detection of Depth Discontinuities

The detection of the depth discontinuities is achieved by the node depth_jump_sensor.
Its task is the detection of the depth discontinuities as well as making sure that a
discontinuity not just appeared once. This part is divided into four sections. First it is
discussed what data the node needs and how that data is structured. Then the detection
of the depth discontinuities and �ltering of false depth discontinuities will be discussed.
This is followed by the tracking of the discontinuities to verify that a discontinuity
not only occurred once. Finally, the data published by this node and its structure is
discussed.

5.1.1. Input Data and Its Structure

In this implementation approach of the GNT a LIDAR is used to detect the depth
discontinuities. The TurtleBot 3 Burger comes with a LIDAR which data is accessible
by subscribing to the topic scan. Listing B.1 shows the de�nition of the LaserScan
message. The �eld which is interesting for the calculation of the depth discontinuities
is the �eld ranges. This �eld is a array of range measurements with the index of the
element being the angle. The length of the array is de�ned by the angle_increment and
angel_min as the start angle and angel_max as the end angle. With the LIDAR of
the TurtleBot 3 Burger the angle ranges from 0◦ to 359◦ with an increment of 1◦. This
results in an array with 360 entries. Additional information needed is the current robot
yaw and if the robot is moving forwards or backwards. This information is used to track
the depth discontinuities from t to t+ 1.
The current robot yaw is determined using the odometry information which can be

accessed by subscribing to the topic odom. From the odometry message the PoseWith-
Covariance �eld contains another �eld which is the pose. To determine the rotation

23

Figure 5.1.: Connections of the node depth_jumps_sensor to the TurtleBot 3.

direction �rst the yaw of the robot needs to be determined. The orientation can be
determined from the quaternion information of the pose. To get the yaw from the
quaternion representation a conversion needs to be done. For this purpose, ROS o�ers a
package called tf [ROS20]. tf knows and stores the information how di�erent coordinate
systems relate to each other and o�ers di�erent transformations. The transformation
from quaternion(x,y,z,w) to euler(roll, pitch, yaw) is one of the transformations o�ered.
Resulting from the conversion is a yaw that has the boundaries −π < x ≤ π. To get
an angle between 0◦ and 360◦ two more steps are required. The �rst step is to convert
the range of yaw to 0 ≤ x < 2π with following calculation ((yaw + 2 ∗ π)%(2 ∗ π)) and
then converting the result to degree with (yaw2 ∗ π ∗ 360)/(2 ∗ π). Listing B.2 shows the
calculation of the robot yaw. For the calculation only the odometry is used, this results
in an angle that might not represent the actual angle. In this case it is not a problem
because the angle will only be used to determine in which direction the robot is turning.
If the robot is moving forward or backwards can be determined by subscribing to

the topic cmd_val. The topic is used to set the motor speed and, in this case, it is
used to listen to it to determine the driving direction. Listing B.3 shows the message
de�nition for the Twist message and Vector3. The Twist message is the one received
when subscribing to the topic odom. From this message we need the linear �eld which
is of the message type Vector3. The de�nition of Vector3 is shown below the Twist
de�nition in Listing B.3. The x �eld of linear contains the forward/backwards speed.
If the value is positive the robot is driving forward and if it is negative the robot drives
backwards.
Figure 5.1 illustrates the connections of the node to the robot by subscribing to re-

spective topics.

5.1.2. Depth Discontinuity Detection and Filtering

This section covers the extraction of depth discontinuities from the LIDAR data and the
�ltering of false depth discontinuities based on the concept introduced in section 4.2.1.
Equation 4.1 and equation 4.2 introduced a way of calculating the depth discontinuities

24

by applying a threshold to the result of each equation. When implementing this approach
in�nite range measurements need to be considered. Such in�nite measurements can occur
when no object was detected within the range. In this case the value of the reading is
inf. Even though this case will not appear in the test environment this is an important
case to keep in mind for the calculation. First the implementation of detecting the depth
discontinuities using a single scan is discussed followed by the implementation for using
two scans. Then it is covered how those two approaches can be combined to �lter the
false depth discontinuities.
Listing B.4 shows the Python code to detect discontinuities using a single laser scan.

The input parameter for the method is the LIDAR reading which is an array of distance
measurements. First the variable depth_jumps is de�ned, which is the output array,
with the same length as the input array and all values being 0. Then an iteration is
performed over every element of the array scan. Each element is then compared with
its successor to determine the depth discontinuity is large enough. If both elements
have a value which is not inf it is checked if the depth discontinuity is larger than the
threshold. When the depth discontinuity is larger than the threshold the closest point
is determined. In the depth_jump array the value of the corresponding element is set
to 1 to indicate that a depth discontinuity is at this angle. If only one of the elements
has a value of inf the element with the none inf value indicates the depth discontinuity.
Again, the value of the corresponding element in the depth_jump array is set to 1.
Figure 5.2 shows an example of the detection of the depth discontinuities. For a), b)

and c) the rows represent the time, the columns represent the angle. In a) the LIDAR
measurements are shown for 5 consecutive time steps and 6 angle steps. In a) the raw
measurement values are shown with the measurements indicating a depth discontinuity
highlighted in green. At each time step the algorithm from Listing B.4 calculates the
absolute di�erence between measurement at α and is successor. The results of this
operations are shown in b). All results being larger than the threshold which is 0, 4 are
now highlighted in green. In c) the results of the algorithm are shown. Every value being
less than the threshold is now 0 and every value larger than the threshold is 1. Note
that the 1 is written where the closest point is to the robot based on the measurements
of a). The last row in b) and c) is empty because the calculation uses the measurement
of the successor which is not available at this point.
Listing B.5 shows the Python code to detect discontinuities using two laser scans

which are one timestep apart. The method takes two arrays of range measurements as
input. One array contains the measurements at time t and the other array contains
the measurements at time t − 1. To make use of the numpy operations both arrays
are converted to numpy arrays. In the next step all inf values are replaced with the
max reading distance and adding the threshold to that value. This allows the later
subtraction work because subtracting an inf value would cause an error. In the next
step the absolute value subtraction is performed which results in a array containing
values which describe the di�erences between elements at the same position. To �lter
the depth discontinuities now all values below the threshold are set to 0. This results
in non-0 vales where a depth discontinuity is detected. Because the actual di�erence is
not important any more all remaining values non-0 are set to 1. This results in an array

25

Figure 5.2.: Detection of depth discontinuities based on the implementation in Listing
B.4. a) shows the raw measurement with the measurements indicating a
discontinuity highlighted. b) shows the results of the absolut di�erence
between the consecutive measurments and highlights those exceeding the
threshold of 0,4. c) shows the resulting depth discontinuities marked with
a 1.

with a 1 at the angle where a discontinuity is detected. For later calculations the values
are then converted to integer values because no �oating-point information is needed.
Figure 5.3 shows an example of the detection of the depth discontinuities using two

scans for the calculation. The measurements used in a) are the same as in Figure 5.2 a).
Again, the interesting values are highlighted in green. In a) one can see by comparing
the values of the cells highlighted in green that a discontinuity is detected. The values
of b) result from the absolute subtraction with the value at the same α of the LIDAR
scan. Highlighted in green is the value which is above the threshold of 0, 4. Appling the
threshold and setting every value below it to 0 and all values greater or equal to 1 lead
to the table presented in c). In b) and c) the �rst row is empty because the calculation
uses the previous measurement which is not available at t− 4.
Comparing the output of the algorithm from Listing B.4 and Listing B.5 using Fig-

ure 5.2 and Figure 5.3 shows two di�erent characteristics. The algorithm for detecting
depth discontinuities using a single LIDAR scan gives a consecutive depth discontinu-
ity position. Whereas the algorithm using two consecutive LIDAR scans only outputs
a depth discontinuity when its position changed due to moving through the environ-
ment. From now on let the result of the detection using a single LIDAR scan be called
discontinuities_single_scan and the result of the detection using two LIDAR scans dis-
continuities_two_scans. This information combined with additional checks allows to
�lter the false depth discontinuities. Figure 5.4 shows discontinuities_single_scan(a)
and discontinuities_two_scans(b) for false depth discontinuities. The y-axis represents
time with time increasing downwards and the x-axis the angle with increasing angle
to the right. Column G is the reading at 3◦ and the seen movement is a rotation to
the right which causes the discontinuities move counter clockwise. The recording of the
depth discontinuities is taken in the environment with the long wall as seen in Figure

26

Figure 5.3.: Detection of depth discontinuities based on the implementation in Listing
B.5. a) shows the raw measurement with the measurements highlighted
indicating an discontinuity. b) shows the results of the absolut di�erence
between the consecutive measurments and highlights those exceeding the
threshold of 0,4. c) shows the resulting depth discontinuities marked with
a 1.

5.5. The measurements in the far distance cause consecutive depth discontinuities which
indicate that those depth discontinuities are false.
To solve this problem the number of consecutive depth detections can be counted.

Therefore, discontinuities_single_scan and discontinuities_two_scans both are checked
to have no direct neighbouring depth discontinuities within 3◦.
The check is performed during the process of adding a discontinuity to the currently

known ones. For the purpose of determining if a discontinuity is known or if it is
new the node holds a array which matches the LIDAR array size, let this array be
called depth_jumps. Initially depth_jumps has no depth discontinuities set. For each
LIDAR scan �rst discontinuities_single_scan and discontinuities_two_scans are calcu-
lated. The discontinuities_two_scans array is then used to perform a check if the depth
discontinuity is new or if it is a previously known depth discontinuity. If the checked
value in discontinuities_two_scans is 1 it is checked if discontinuities_single_scan has
a 1 at the same entry. If not, the element ±1 from the viewed one is checked to deter-
mine the actual position of the discontinuity. For the search it is important to take the
movement of the robot into account.
The movement of the robot has an impact on how the depth discontinuities move

and is important for matching depth discontinuities at t with the depth discontinuities
at time t − 1. Figure 5.6 illustrates how depth discontinuities move when the robot
performs di�erent movements. The arrows in red indicate the movement of the robot.
Drawn in blue is the position of the depth discontinuity before the movement. In green
the movement direction of the depth discontinuity is visualised. When the robot rotates
clockwise the depth discontinuities move counter-clockwise as shown in a). If the robot
rotates counter-clockwise the depth discontinuities move clockwise which is shown in b).
The forward and backwards movement of the robot causes a slightly di�erent behaviour

27

(a) False detection single scan. (b) False detection two scans.

Figure 5.4.: Recording of false detection for discontinuities_single_scan
discontinuities_two_scans

Figure 5.5.: Test environment for the perspective problem during depth discontinuity
detection. The robot is positioned in the bottom left corner. A rotation to
the right produces the output shown in Figure 5.4.

28

in movement for the depth discontinuity. It is di�erent for the left side and right side of
the robot. With the left side being 0◦ to 180◦ and right side being 180◦ to 360◦ and 0◦

in the front of the robot. If the robot is moving forward the depth discontinuities on the
left move towards 179◦ so the angle increases. On the right side the depth discontinuities
move towards 180◦ so the angle decreases. The forward movement is shown in c). If the
robot moves backwards the movement on the left and right invert compared with the
forward movement. On the left the depth discontinuities move towards 0◦ so the angle
decreases and on the right side the depth discontinuities move towards 360◦ so the angle
increases which is shown in d).

(a) Robot rotates clockwise. (b) Robot rotates counter-clockwise.

(c) Robot moves forwards. (d) Robot moves backwards.

Figure 5.6.: Movement of the discontinuities depending on the robot movement. The
robot movement is drawn in red. Blue is the depth discontinuity at time t.
Green is the depth discontinuity at time t+ 1 and the movement direction
of discontinuity.

So, the searching direction for a depth discontinuity of discontinuities_two_scans in
discontinuities_single_scan depends on the movement of the robot. As an example, let
us assume the robot turns counter-clockwise. For this case we �rst want to search in
the clockwise direction and then the counter-clockwise direction. With a turn counter-
clockwise the discontinuities_two_scans all discontinuities move clockwise on the de-

29

tection. Therefore, we �rst want to check in the counter-clockwise direction and then in
the clockwise direction. In the next step it needs to be determined if the detected depth
discontinuity was detected at t − 1 by checking depth_jumps. Here we want to search
in the opposite direction than to where the depth discontinuities are expected to move.
The search range used is ±1◦. If no depth discontinuity was found this discontinuity
needs to be added. Otherwise, a tracking is performed to verify that the discontinuity
not only occurred once which is covered in section 5.1.3. Before the depth discontinu-
ity is added to depth_jumps the earlier mention a check for multiple neighbouring is
performed and the discontinuity is only added if there are no neighbouring depth dis-
continuities. Listing B.6 shows how the neighbour check is performed. This algorithm
is called for discontinuities_two_scans and discontinuities_single_scan. If both return
that no neighbouring depth discontinuities are found the new depth discontinuity is
added.
The decision on how the discontinuities_two_scans array needs to be processed is

done by the method shown in Listing B.7. As input the method requires discontinu-
ities_two_scans, discontinuities_single_scan, rotation, movement and the discontinu-
ities from the last time step. First it is checked if the robot rotated and if the start index,
end index, increment for the loop and search direction are set. Then the correction is
executed using this information. The second step is to check if the robot moved forward
or backwards. In Figure 5.6 a) and b) it is shown how the depth discontinuities move.
The correction is now performed di�erent for the range from 0◦ to 179◦ and 180◦ to
359◦. The settings for the correction of forward and backwards movement are shown in
Listing B.8. To avoid errors due to a drift in standstill this case is also checked.
Listing B.9 shows the described correction method as pseudo code. As described

earlier the discontinuities_two_scans are checked if a depth discontinuity is indicated.
When a discontinuity is detected the check for the exact position is performed as well as
the check if the discontinuity is previously known. The tracking and veri�cation process
in line 7 and Line 13 to 20 will be discussed in section 5.1.3. If the discontinuity is not
known Listing B.6 is performed twice and added if no neighbours were detected.

5.1.3. Veri�cation

This section covers the tracking of the depth discontinuities. The idea of tracking is
to prevent following to cases. First, prevent the detection of a discontinuity which only
appeard once. Second, prevent a depth discontinuity to be marked as disappeared due to
a single detection fail. To prevent those two events the number of detections is counted.
Each time a depth discontinuity from t − 1 is found in t the counter is incremented.
The incrementation is done until a threshold is reached. If a discontinuity from t− 1 is
not found in t the counter is decreased. The counter is realised using the depth_jump
array. Line 13 to line 20 of Listing B.9 shows how discontinuities are handled when
discontinuities_two_scan does not detect a change. If at t − 1 a depth discontinuity
was detected the counter for this discontinuity will be greater than 0. In this case
discontinuities_single_scan is checked to determine if the discontinuity is still there. If
the discontinuity is still there the counter gets increased until the threshold is reached.

30

Otherwise, the counter is decreased. When decreasing the counter, it eventually will get
to 0 which proves that the discontinuity no longer exists. The method at line 7 of Listing
B.9 handles tracking for the case of a merge, split or move of a depth discontinuity to
allow the counter to be updated correct. Listing B.10 shows the algorithm behind line
7 of Listing B.9. First a check for split and merge is done. Based on the results of those
checks the according operation is performed. In case of a merge the array is updated
so that the counter from one of the two merged depth discontinuities is copied to the
merged discontinuity and incremented. Then the counter of the two merged depth
discontinuities is set back to 0. When a split is detected the counter of the splitting
depth discontinuity is copied to the depth discontinuities resulting from the split and
incremented. The counter of the previous depth discontinuity is set back to 0. A move
of a gap is the third possible event. The counter gets copied from the position at t− 1
to the position at t of the gap. Again, the counter gets incremented and the counter at
t− 1 set back to 0. Note, the counter is only incremented if it is below the threshold.

To determine which depth discontinuities can be published the depth_jumps array
is processed after the update algorithm (Listing B.7) is �nished. Therefore, an itera-
tion over the whole array is performed. A depth discontinuity is valid if the counter
is greater or equal to the threshold. An output array is created matching the size of
the depth_jumps array with all elements initially set to 0, let this array be called dis-
continuities. For each valid depth discontinuity, the element at the same index of the
discontinuities array is set to 1.

5.1.4. Published Data and Its Structure

The node publishes the detected discontinuities to the topic depth_jumps. Listing B.11
shows how the message published to the topic looks like. The message contains a header,
the discontinuities array (depth_jumps), the LIDAR measurements (range_data), the
information in which direction the robot rotated (rotation) and the information if the
robot moved forwards or backwards (liniear_x). In the header the time stamp and
sequence �eld are set. The �eld depth_jumps contains the data of the discontinuities
array from the veri�cation process. Rotation and forward, backwards movement are the
movements the robot made to obtain this depth discontinuity reading.

5.2. Critical Events and Discontinuity Movement

This section covers the detection of the four critical events appear, disappear, merge
and split as well as detecting the movement of the discontinuities. It will be discussed
how each of these events is detected and how the information is made available for other
nodes. The node responsible for this task is the gap_sensor.

31

Figure 5.7.: The node gap_sensor subscribes to the topic depth_jumps of the node
depth_jumps_sensor

5.2.1. Input Data and Its Structure

The node gap_sensor subscribes to the topic depth_jumps as shown in Figure 5.7 and
is awaiting the message of Listing B.11. This shall allow the reuse of the critical event
detection and movement detection for the tree construction.

5.2.2. Detection of Critical Events and Discontinuity Move

To detect the critical events and discontinuity moves the gap_sensor holds a global
array depth_jumps_last which is of the same size as the �eld depth_jumps from the
message DepthJumps. The gap_sensor implements a detection algorithm called de-
tect_critical_events which uses the information rotation and linear_x of the message
DepthJumps to determine what actions need to be performed. Listing B.12 shows the
detect_critical_events method which decides what action needs to be performed. The
method takes the received depth discontinuity reading, rotation and movement. Based
on the rotation and movement the method updates the local view of the depth disconti-
nuities and searches for the critical events as well as discontinuity movements. First the
matching of the rotation is discussed followed by the forward and backwards movement
matching. After discussing those to processes the detection of appear, disappear, merge,
split and move are discussed in detail.

5.2.2.1. Match the Rotation

Listing B.13 shows the decision making on how to perform the matching. Notice that
the searching direction changed compared to Listing B.7. This is because the approach
for the matching is done di�erently. In section 5.1 the approach was to determine if the
detected discontinuity existed previously. Now the approach is to check if a discontinuity
detected at time t − 1 still exists at time t. If the robot has, for example, a depth
discontinuity at 10◦ and the turns 5◦ clockwise the new position will be at 15◦. To �nd

32

this new position a search in positive direction (increasing angle) needs to be performed.
Assuming we have a array with 360 entries this means, if the robot rotates clockwise
the search is performed starting at 0◦ and increasing the angle until it reaches 359◦.
When the robot rotates counter-clockwise the search if performed starting at 359◦ and
decreasing the angle until it reaches 0◦.
Listing B.14 shows the algorithm that handles matching of the new depth discontinuity

reading to the locally stored representation. First a copy of the dept_jumps array is
created because we do not want to modify the original array. Then an iteration is
performed over the depth_jumps_last array. The range and iteration direction are
de�ned by the start_index, end_index and increment. In the given range the elements
at index of depth_jump_last and depth_jumps_cp are checked for change. The �rst
loop is designed to check for a move, merge or disappear and the second to check for
a move which was not detected in the �rst loop or if it is a appear. An indication
for a move, merge or disappear is that depth_jumps_last is 1 and depth_jumps_cp is
0. In this case �rst the new position of the depth discontinuity is tried to be found.
The �nd_new_pos_of_depth_jump �rst performes a search in the direction indicated
by the parameter increment starting from index and then in the opposite direction.
Searching into the increment direction �rst because this is where the depth discontinuity
is expected to move due to the rotation. After searching for the new position, the check
is performed if it is a move, merge or disappear which can be distinguished by the value
of index_new the details on how this method is implemented is discussed in section
5.2.2.4. When depth_jumps_last and depth_jumps_cp both are 1 the copy can be set
to 0 so it will not be processed in the second loop. The second loop checks of any
depth discontinuities in depth_jumps_cp to not be processed by the �rst loop. When
depth_jumps_cp is 1 and depth_jumps_last is 0 at this point this most likely indicates
a new appeared depth discontinuity. The other possibility is a failed move of the gap at
the �rst time and therefore is tried again to match. Because one of those two cases will
apply the last step is to set depth_jumps_cp to 0.

5.2.2.2. Match the Forward and Backwards Movement

When matching the depth discontinuities during a forward or backwards movement the
range from 0◦ to 179◦ and 180◦ to 359◦ need to be searched di�erently, compared to
as mentioned in Figure 5.6. First match_forward_backwards at line 16 of Listing B.12
checks in which direction the robot is moving and determines the corresponding method
to call which either ismatch_forward ormatch_backwards. Listing B.15 shows how both
methods iterate over the depth_jumps_last. The method match_forward iterates over
the depth_jumps_last starting at 0◦ to 179◦ and 359◦ to 180◦. For the match_backwards
the direction of the iteration changes to 179◦ to 0◦ and 180◦ to 359◦. The methods
check_positive_direction and check_negative_direction perform the checks for move,
merge, disappear, appear and split.
Listing B.16 shows the method check_positive_direction. First a check is performed

if there might have been a move, merge or disappear. The indication for this is
depth_jumps_last being 1 or higher and depth_jumps_cp being 0. If this applies the

33

new position is searched in positive direction in a range of 5 degree. It is possible that the
detection was in negative direction due to measurement noise. Therefore, a search is per-
formed in negative direction if the search in the positive direction was unsuccessful. With
the received new position which might be Null the check_move_merge_disappear is ex-
ecuted. The check_move_merge_disappear is discussed in detail in section 5.2.2.4. A
possible split or appear is indicated by depth_jumps_cp being 1 and depth_jumps_last
being 0. For this case the check_split_appear is executed to determine if it is a split or
appearance. It is also possible that depth_jump_last and depth_jump_cp both have the
value 1. For this case now it is su�cient to set the depth_jumps_cp back to 0 so it does
not get processed again. The method then returns the index which might have changed
in case of a split by being set to where the second depth jump of the split was found. For
the check_negative_direction four lines change compared to check_positive_direction.
The �rst line that changes is line 6 which changes to search_x_degree_negative but
with the same parameters. Line 8 changes to check_x_degree_positive but the param-
eters stay unchanged. On line 9 the last parameter changes from 1 to �1. The last line
that change is on line 14 where the last parameter changes from +1 to �1.

5.2.2.3. Match Drift While Still Stand

To prevent information loss the matching is also performed when no rotation and move-
ment forwards or backwards is detected because of slow drift of the robot. Listing
B.17 shows the detection of a move, merge, disappear or appearance. The iteration
is performed over the depth_jumps_last and depth_jumps_cp array. It is checked for
depth_jumps_last being 1 and depth_jumps_cp being 0 which indicates a move, merge
or disappear. The discontinuity is expected to move only one degree. Therefore, the
neighbouring elements of depth_jumps_cp[index] are checked for being 1. The result is
used to perform the move, merge and disappear check. If depth_jumps_last is 0 and
depth_jumps_cp is 1 a discontinuity appeared at this position. The method disconti-
nuity_appear creates a message, updates global depth_jumps_last and sets the element
at index to 2 which marks it as new appeared. This is done for debugging proposes
to make tracking easier. A critical event message is created and published to the topic
critical event as well as added to a global event array.

5.2.2.4. Di�erentiation Between Move, Merge and Disappear

The decision if a depth discontinuity moved, merged or disappeared is done by the
method
check_move_merge_disappear in Listing B.18. The simplest case is when index_new
has no value. This means the previously detected depth discontinuity disappeared
and the discontinuity_disappear method is called. The method updates the global
depth_jumps_last array by removing the discontinuity at index_old and creating a
disappear event message which is published to the topic critical_event and added to a
global event array. When index_new is set the two possible events are move and merge.
Figure 5.8 shows depth discontinuities at time t − 1 and t for a move and merge. The

34

Figure 5.8.: Move and merge in comparison and the parameters from Listing B.18

method gets index_old_1 and index_new as parameters. To determine if it is a move
or merge it needs to be determined if there is a second depth discontinuity at t−1 which
is two degrees apart of index_old_1. This check is done inside check_merge. The search
direction for index_old_2 is de�ned by the parameter search_increment and depends
on the movement of the robot. Depending on the result of the check for a merge ei-
ther discontinuity_moved or discontinuity_merge is called. The discontinuity_moved
method updates the global depth_jumps_last array by setting the element at index_old
to 0 and the element at index_new to 1. A move message is created which is published
to the topic gap_move and added to a global array which holds all moves. The disconti-
nuity_merge method sets the elements of the global stored depth_jumps_last array at
index_old_1 and index_old_2 to 0. To highlight the merged depth discontinuity dur-
ing debugging the element at index_new is set to 1. A critical event message is created
which is then published to the topic critical_event and added to the global event array.

5.2.2.5. Di�erentiation Between Split and Merge

The decision if a depth discontinuity is a split or appeared is done by the method
check_split_appear in Listing B.19. First it needs to be determined if the found
depth discontinuity has a position at t − 1. Therefore, depending on the parameter
search_increment a search is done two degrees from the current position. Figure 5.9
shows an example for appear and split with example positions for depth discontinuities
and the variables storing the positions. If a previous position was found the next step is
to determine if there is a second depth discontinuity at t within two degrees. To be sure
that the depth discontinuity at t − 1 split it is checked to not have any other disconti-
nuities within three degrees. Neighbouring depth discontinuities could indicate that it
is a move rather than a split. If the both conditions are ful�lled the check returns the
index of the second depth discontinuity as index_new_2 resulting from the split. Now
if index_old and index_new_2 is set the discontinuity_split is called, and the arrays
are updated. If it is not a split it must be a new depth discontinuity appearing and
discontinuity_appear is called. The method split sets the element at index_old_1 of
the global depth_jumps_last to 0. For the tracking purpose during debugging the split
depth discontinuities at index_new_1 and index_new_2 are set to 3. The critical event

35

Figure 5.9.: Appear and split in comparison and the parameters from Listing B.19

message is created, published to the topic critical_event and added to the global list of
critical events.

5.2.3. Published Data and Its Structure

This section discusses how the critical events and move events are published. The
events are published in three di�erent ways. First, the events are publised on each event
detection. This means every time a appear, disappear, merge, split or move is detected
the respective event is published. Second, all move events and all critcial events are
publised to the respective topics after proccesing. Third, all move events and all critical
events are published to one topic as a collection after processing. The message of the
type CriticalEvent is published to the topic critical_event with every detection. Listing
B.20 shows the de�nition of the message from line 5 to line 9. Depending on the event
types listed on line 12 to 16 the �elds are set. For the event of an appearing discontinuity
the event_type �eld is set to 1 and the angle_new_1 is set with the angle value. On a
disappear event the event_type �eld is set to 2 and the �eld angel_old_1 is set with the
angle where the discontinuity disappeared. For a split the �eld event_type is set to 3,
the �eld angle_old_1 is set with the angle of the discontinuity that split, angle_new_1
and angle_new_2 are the new angles of the discontinuities resulting from the split. The
last event to cover is the merge. In case of a merge the �eld event_type is set to 4,
angle_old_1 and angle_old_2 is set with the angles of the discontinuities that merged
and angle_new_1 is set with the angle of discontinuity resulting from the merge. The
de�nition of the collection of critical events is shown on line 2 of Listing B.20. Listing
B.21 shows on line 5 to line 6 how the move message is de�ned. The message simply
contains the old angle and the new angle. Like the critical events the move event is
published after every detection and as a collection which is de�ned on line 2 of Listing
B.21. The message for sending the collection of critical events and collection of mov
events together is shown in Listing B.22. The message is published after processing an
update on the topic depth_jumps. After publishing the collections are reset.

36

Figure 5.10.: The node gap_navigation_tree subscribes to the topic
collection_critical_and_moved of the node gap_sensor

5.3. Tree Construction

The node gap_navigation_tree is responsible for the construction of the tree. With the
information of the topic collection_critical_and_moved the tree is updated according
the events. First it is discussed how the messages received from
collection_critical_and_moved shown in Figure 5.10 are processed followed by how the
constructed tree is made available.

5.3.1. Events Messages Processing

The construction and updating of the tree is done based on the information received from
the topic collection_critical_and_moved which data is described in section 5.2.3. While
processing it is ensured that only one message is processed at a time. The constructed
tree is stored globally as a 360◦ representation which is an array named root. This is
done to maintain the information at which degree the discontinuity is located. In the
beginning each of these elements has no node attached. The implementation of the tree
node class is shown in Listing B.23. It is constructed of a �eld for the id and an array
of children. The id is a consecutive number for each newly created node. First the
critical event messages are processed. According to the event type the respective action
is performed. If the event is an appearance a new node is created and added to the root
at the angle of the appearance. On disappearance the disappearing depth discontinuity
is removed from root including all its children. When two depth discontinuities merge
�rst a new node is created. Then the two nodes which merge are added to the newly
created node as children. The merging nodes are then removed from the root and the
newly created node is added to the root at the corresponding angle. A split of a depth
discontinuity has two di�erent actions in the tree depending on if the node representing
the split depth discontinuity having children or not. If the node has children those two are
added according to the angles and the node representing the split depth discontinuity is
removed. When the node has no children �rst two new nodes are created and then added
to the root. After having processed all critical events the move events are processed.
The move event is a removing of the node at the given angle_old and moving it to
angle_new. Figure 5.11 visualises how the node sees the constructed tree.

37

Figure 5.11.: Visualisation how the tree is stored in the node gap_navigation_tree

5.3.2. Published Data and Its Structure

The constructed tree is published every time the message from the
collection_critical_and_moved topic contains one or more critical events. Before it can
be published the tree needs to be converted to the message type the topic gap_tree
requires. Listing B.24 shows how the tree node is de�ned in the ROS message. A
de�nition of the tree node like the Python implementation in Listing B.23 which would
look like Listing B.25 is not possible. The reason for this is that it is not possible to
de�ne a default value for custom messages. When trying to generate the message in
Listing B.25 an endless loop starts because the ROS build tool searches for data type
which has de�ned default values. The de�nition in isting B.24 is the alternative way for
contracting the tree. It contains all nodes as a list and each node has an id and a list of
child ids. Based on this information the receiver needs to construct the tree.

5.4. The Complete System

Figure 5.12 shows all nodes and the topics they subscribe. At top the TurtleBot 3
Burger is visualised with its sensor and the depth_jump_sensor node which subscribes
to the odometry, LIDAR and motors. This node is speci�c for to the application
with the TurtleBot 3 Burger which uses a LIDAR sensor. The node gap_sensor and
gap_navigation_tree are designed to be reused with any other system which can extract
depth discontinuities.

38

Figure 5.12.: All nodes and the communication between them.

39

6. Results

This chapter discusses the results gained during testing the implemented framework.
For the tests three di�erent environments were chosen which are shown in Figure 6.1.
The environment shown in a) is a small environment with the outer boundaries being
3,5m x 3,5m. Due to its shape it is perfect to test the discontinuity detection and critical
events. By travelling to the bottom right a merge should occur and when traveling back
this merged discontinuity should split. The environment in shown b) allows to test the
perspective problem. Discontinuities will appear in the distance on the wall if the robot
depending on his orientation towards it. Furthermore, the environment allows to check
the e�ect of long distance on the detection of discontinuities. The last environment
shown in c) is a more complex one. Multiple discontinuities will appear at the same
time and this will show how the framework can handle multiple discontinuities.
First let us discuss the results of the test in environment b) of Figure 6.1. To test

if the concept discussed in section 4.2.1 the robot was put close to the wall so in the
distance will appear discontinuities where no discontinuities are. First it was tested if
the �ltering of false discontinuities works during the rotation of the robot. Therefore,
the robot was turned clockwise and counter-clockwise several times. The tests for this
setup gave mixed results. There have been tests where the depth_jump_sensor node
�ltered the false discontinuities successful but in general not a 100% correct detection.
Figure 6.2 shows the result of one of the tests where in a) the depth_jump_sensor node
accepted a false depth discontinuity which is the left one. The robot was in the bottom
left corner and looking upwards as shown in Figure 6.1 b). In Figure 6.2 b) and c) it
can be seen that there is a miss match to a). The discontinuity reading in b) shows
to detections on the right. Those are from the top right corner. In a) they are not
shown as this representation constantly updates and at the time of taking the image the
second depth discontinuity was not detected. The nonconstant detection in a) resulted
in the wrong representation in c) where the gap_nativigation_tree node shows the
current representation of the environment. During the rotation the detection changes
caused several new depth discontinuities. They were not recognised and not detected
as disappearing which resulted in several left over discontinuities as shown in d). The
measurement noise, which is simulated by gazebo, caused false representations. Figure
6.3 shows some images of another rotation test. This time the depth_jump_sensor node
managed to detect the false discontinuities and �ltered them as shown in a). In b), c) and
d) can be seen that the discontinuity of the corner in the far-top right corner again caused
some false results and therefore the representation gained by the gap_navigation_tree
node is not correct.
Figure 6.4 shows some images of the perspective test in environment b) of Figure

6.1. The depth_jump_sensor node can detect the false depth discontinuities due to the

40

(a) Simple test environment. (b) Environment for perspective test.

(c) Complex test environment.

Figure 6.1.: Environments used to test the framework.

41

(a) Readings depth_jump_sensor node. (b) Readings gap_sensor node.

(c) Readings gap_navigation_tree,

discontinuity positions. (d) Readings gap_navigation_tree, tree view.

Figure 6.2.: Rotation test 1 in environment 6.1.b .

42

(a) Readings depth_jump_sensor node. (b) Readings gap_sensor node.

(c) Readings gap_navigation_tree,

discontinuity positions. (d) Readings gap_navigation_tree, tree view.

Figure 6.3.: Rotation test 2 in environment 6.1.b .

43

perspective and �lters it. Compared to Figure 6.2 and 6.3 there are not two detections in
the top right corner in b) and c). But d) reveals that there must have been some wrong
detections in the top right because nodes are disconnected from the robot. Floating
nodes in the graph indicate that the detection of the depth discontinuities most likely
had some false detections and therefore caused a false information during the detection
of the critical events or move events. The actual reason for this needs to be determined
with more tests.
To test the detection of the critical events and move events the environment a) in

Figure 6.1 was used. The robot was navigated through the environment manually on
the path shown in Figure 6.5 a). The start is in the top right corner were the robot �rst is
moved straight ahead to the junction. At the junction a 90◦ counter-clockwise turn was
performed so the robot will face downwards when looking from the top. The robot is then
moved forwards until the left side is free for the robot. It is then performed again a90◦

counter-clockwise turn and moved forward. When the wall to the left disappears again a
turn 90◦ counter-clockwise is done. The robot is then moved forward to approximately
the centre. From this point the robot is then moved back to the starting point on the
same route. The expected number of the discontinuities on the path can be determined
for this small environment manually. In b) the sectors and number of discontinuities
expected to be detect is added in blue to the previously discussed path. The letters in
red are names for the sections for easier referencing. Critical events are expected to occur
between G and H. When going from G to H two depth discontinuities will merge into one
which is the critical event merge. When traveling from H to G the merged discontinuities
split again which is the critical event split. In Figure c) and d) the splitting and merging
depth discontinuities between G and H are drawn in red.
Figure 6.6 shows results from the test in the environment Figure 6.1 a). The �rst

column (a, c, e) shows the constructed tree and the second column (b, d, f) the depth
discontinuity positions. As the driving speed the maximal possible speed of the TurtleBot
3 Burger is chosen. The maximum translational velocity is 0,22m/s and the maximum
rotational velocity is 2.84 rad/s. Several tests were done, and detection issues were
discovered during this test. When moving between sector F, G and H the results were
not stable. In a) and b) readings for sector F is given. Note that the nodes are numbered
with 1, 2 and 3. When the robot moves to sector H the tree nodes 2 and 3 are expected
to merge and create a new node 4. In c) and d) the reading after driving into sector H
coming from sector F through G is shown. Looking at the nodes of the tree in c) one can
see that the result is di�erent to the expected results. The merged node has as children
node 3 and 5 and the previous node 1 changed to node 4. This behaviour was observed
during the test multiple times. The cause for this seems to be the transition from G
to H where depth discontinuities are detected as disappearing and then appear again.
Because of the de�nition that appearing depth discontinuities get a new id the number
of the node is new even if it is the same than before. To prevent this behaviour caused by
measurement noise the detection of depth discontinuities needs to be improved. Driving
back from sector H to F the previously merged depth discontinuities are expected to split
and the children of the splitting nodes. The result in e) and f) are not as expected. Due
to disappearing and appearing the representation of the environment is wrong. Node 3

44

(a) Readings depth_jump_sensor node (b) Readings gap_sensor node.

(c) Readings gap_navigation_tree,

discontinuity positions. (d) Readings gap_navigation_tree, tree view.

Figure 6.4.: Forward driving in environment 6.1.b .

45

(a) Driving path.

(b) Sections with number of depth

discontinuities detected.

(c) Discontinuity reading in section G. (d) Discontinuity reading in section H.

Figure 6.5.: Driving in environment 6.1.a.

46

and 5 which were expected to appear from the split of node 6 are shown as merged into
node 8. Furthermore, the node 4 was detected as disappearing and then reappeared. To
solve this issue some more tests need to be done in the future to analyse the exact cause
and how this can be prevented and adapt the algorithms accordingly.
The third test was performed in the environment shown in Figure 6.1 c). Compared

to the other environments it is a very complex environment. When the robot moves
around the space in the centre multiple depth discontinuities can be detected. There-
fore, this environment is convenient to test how the framework can handle multiple
depth discontinuities at a time. When running the simulation at �rst everything works
as expected. As soon as the robot turns the discontinuities appear on the visualisation
of the depth_jump_sensor node and gap_sensor node without any delay. By the time
the �rst depth discontinuities are detected a delay of 6 seconds can be detected until
the movements show up on the visualisation. Listing 6.1 shows the average processing
time of one LIDAR scan for the depth_jump_sensor and gap_sensor in environment
a) and c) of Figure 6.1. When comparing the average processing time, a small di�erence
can be determined but this should not lead to a delay of 6 seconds. It turns out that
the visualisation cannot handle the fast updates. While navigating the robot through
the environment the same behaviour was observed as in the small environment. By the
numbers of the nodes in the tree representation shown in Figure 6.7 can be determined
that several appear and disappear events got triggered. There are no consecutive num-
bers and two nodes which are not connected. Therefore, no valid result could be achieved.

1 ### Complex Environment ###
2 gap_sensor : 0 .721991212554 ms
3 depth_jump_sensor : 3 .94728794769 ms
4
5 ## Simple Environment ###
6 gap_sensor : 0 .568701975369 ms
7 depth_jump_sensor : 3 .41519563684 ms

Listing 6.1: Average processing time of one LIDAR scan and discontinuity reading for
the simple and complex environment.

47

(a) Section F: Tree representation. (b) Section F: Discontinuitiy reading.

(c) Section H coming from F: Tree

representation.

(d) Section H coming from F: Discontinuitiy

reading.

(e) Section F coming from H: Tree

representation.

(f) Section F coming from H: Discontinuitiy

reading.

Figure 6.6.: Results from driving from F to H and back to F in the environment shown
in Figure 6.5

48

Figure 6.7.: Resulting graph after moving around in the complex environment from
Figure 6.1.c.

49

7. Discussion and Conclusion

This chapter summarises the outcome of this work. The result is critically re�ected and
limitations are discussed. At the end, some insights and �nal thoughts are provided.

7.1. Critical Re�ection

This work presents an implementation approach of generating a representation of the
environment using minimal sensing information based on the theory proposed by Tovar et
al.[TML07]. The framework is designed to allow the use of di�erent sensors to extract the
depth discontinuities. With the current implementation the framework is a prototype
approach, because the framework does not produce stable results. Parameters of the
di�erent nodes currently are only changeable by manipulating the code and not with
passing parameters to the nodes during start-up.
The development was only done using the simulator Gazebo and it can be expected

that the framework will behave di�erent in a real environment. This is because the
simulator cannot recreate the real worlds noise of for example the LIDAR measurement.
Furthermore, the used environments were very abstract and do not represent a real
environment which might return di�erent results.
Choosing the TurtleBot 3 Burger might have been a wrong decision. The robot ful�ls

the needs of having minimal sensing by only having a LIDAR and odometry but it has
a sensor which only has a range of 3,5m and a resolution of 1◦. This limits the robot to
environments of 3,5m x 3,5m to ful�l the requirement of tracking a discontinuity. Fur-
thermore, the update rate of the LIDAR sensor as well as the odometry is an important
part to allow accurate tracking.
Transferring the ideal assumption of Tovar et al.[TML07] to an actual sensor was

underestimated and took more time than expected. A lot of time was put into achieving
a depth discontinuity detection which can handle the detection of false discontinuities
and accurate tracking. This time was missing at the end to take a closer look at why
the construction of the tree is not reliable.

7.2. Limitations

At the current state of the framework parameters can only be changed from within the
code. Furthermore, it is not ready for real world use and some more research needs to be
put into it to make it ready for it. The robot currently needs to be controlled manually.
Using ROS the tool for this purpose is the teleop_twist_keyboard which allows to set

50

the rotation, forwards and backwards speed and giving the drive commands using the
keyboard.

7.3. Future Work

To make the framework more correct the robustness needs to improve. Therefore, the
detection of depth discontinuities and the detection of critical events and moves of dis-
continuities need more research and testing in di�erent scenarios and di�erent robot
speeds. An important part for autonomous driving is the check if a robot �ts through a
gap that is indicated by a depth discontinuity. In the real environment a discontinuity
might be caused by some obstacle which has a gap which is large enough that it causes
depth discontinuities that are recognised but too small for the robot to �t through it.
Another important step for autonomous driving is the chasing of depth discontinuities.
Therefore, an algorithm needs to be developed which uses wall following and obstacle
to detection to chase a depth discontinuity. This needs to be done because the robot
would hit the wall when it just approaches the depth discontinuity in a straight line as
described in Tovar et al.[TML07] where the robot was modelled as a point. Testing the
framework in a real environment with a real robot is also a task that needs to be done.

51

Bibliography

[Adn15] Adnan Ademovic. An Introduction to Robot Operating System: The Ultimate
Robot Application Framework. Toptal Engineering Blog. 2015. url: https:
//www.toptal.com/robotics/introduction- to- robot- operating-

system (visited on 10/22/2020).

[Afz+20] Afsoon Afzal et al. �A Study on the Challenges of Using Robotics Simulators
for Testing�. In: arXiv:2004.07368 [cs] (Apr. 15, 2020). arXiv: 2004.07368.
url: http://arxiv.org/abs/2004.07368 (visited on 10/22/2020).

[ASN09] Farshad Arvin, Khairulmizam Samsudin, and M. Ali Nasseri. �Design of a
di�erential-drive wheeled robot controller with pulse-width modulation�. In:
2009 Innovative Technologies in Intelligent Systems and Industrial Appli-
cations. 2009 Conference on Innovative Technologies in Intelligent Systems
and Industrial Applications (CITISIA). Kuala Lumpur, Malaysia: IEEE,
July 2009, pp. 143�147. isbn: 978-1-4244-2886-1. doi: 10.1109/CITISIA.
2009.5224223. url: http://ieeexplore.ieee.org/document/5224223/
(visited on 10/22/2020).

[Fou14] Open Source Robotics Foundation. Gazebo models. 2014. url: http://
models.gazebosim.org/ (visited on 10/22/2020).

[Fou18] Open Source Robotics Foundation. kinetic - ROS Wiki. Aug. 1, 2018. url:
http://wiki.ros.org/kinetic (visited on 10/22/2020).

[Fou20] Open Source Robotics Foundation. SDFormat Home. 2020. url: http://
sdformat.org/ (visited on 10/22/2020).

[gee20] geeksforgeeks. Introduction to ROS (Robot Operating System). GeeksforGeeks.
Section: Advanced Computer Subject. Jan. 3, 2020. url: https://www.
geeksforgeeks.org/introduction-to-ros-robot-operating-system/

(visited on 10/22/2020).

[gen20a] generationrobots. LDS-01 360 Laser Distance Sensor. Génération Robots.
2020. url: https://www.generationrobots.com/en/402984-lds-01-
360-laser-distance-sensor.html (visited on 10/22/2020).

[gen20b] generationrobots. TurtleBot3 Burger educational robot. Génération Robots.
2020. url: https://www.generationrobots.com/en/402707-turtlebot3-
burger-mobile-robot.html (visited on 10/22/2020).

[KC20] Motaz Khader and Samir Cherian. �An Introduction to Automotive LI-
DAR�. In: (2020), p. 7.

52

https://www.toptal.com/robotics/introduction-to-robot-operating-system
https://www.toptal.com/robotics/introduction-to-robot-operating-system
https://www.toptal.com/robotics/introduction-to-robot-operating-system
http://arxiv.org/abs/2004.07368
http://arxiv.org/abs/2004.07368
http://dx.doi.org/10.1109/CITISIA.2009.5224223
http://dx.doi.org/10.1109/CITISIA.2009.5224223
http://ieeexplore.ieee.org/document/5224223/
http://models.gazebosim.org/
http://models.gazebosim.org/
http://wiki.ros.org/kinetic
http://sdformat.org/
http://sdformat.org/
https://www.geeksforgeeks.org/introduction-to-ros-robot-operating-system/
https://www.geeksforgeeks.org/introduction-to-ros-robot-operating-system/
https://www.generationrobots.com/en/402984-lds-01-360-laser-distance-sensor.html
https://www.generationrobots.com/en/402984-lds-01-360-laser-distance-sensor.html
https://www.generationrobots.com/en/402707-turtlebot3-burger-mobile-robot.html
https://www.generationrobots.com/en/402707-turtlebot3-burger-mobile-robot.html

[KN11] Podishetty Naveen Kumar and Y. Shivraj Narayan. �Simulation in Robotics�.
In: Jan. 11, 2011.

[LSR06] Tim Laue, Kai Spiess, and Thomas Röfer. �SimRobot � A General Physi-
cal Robot Simulator and Its Application in RoboCup�. In: RoboCup 2005:
Robot Soccer World Cup IX. Ed. by Ansgar Bredenfeld et al. Red. by David
Hutchison et al. Vol. 4020. Series Title: Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 173�183. isbn: 978-
3-540-35437-6 978-3-540-35438-3. doi: 10.1007/11780519_16. url: http:
//link.springer.com/10.1007/11780519_16 (visited on 10/22/2020).

[Ope14a] Open Source Robotics Foundation. Gazebo. 2014. url: http://gazebosim.
org/ (visited on 10/22/2020).

[Ope14b] Open Source Robotics Foundation. Gazebo : Tutorial : Model Editor. 2014.
url: http://gazebosim.org/tutorials?tut=model_editor (visited on
10/22/2020).

[Ope20a] Open Robotics. ROS.org | Core Components. 2020. url: https://www.
ros.org/core-components/ (visited on 10/22/2020).

[Ope20b] Open Robotics. rqt - ROS Wiki. 2020. url: http://wiki.ros.org/rqt
(visited on 10/22/2020).

[Ope20c] Open Robotics. rviz - ROS Wiki. 2020. url: http://wiki.ros.org/rviz
(visited on 10/22/2020).

[Qui+09] Morgan Quigley et al. �ROS: an open-source Robot Operating System�. In:
(2009), p. 6.

[ROB20a] ROBOTIS. TurtleBot3 Simulation. ROBOTIS e-Manual. 2020. url: https:
//emanual.robotis.com/docs/en/platform/turtlebot3/simulation/

(visited on 10/22/2020).

[ROB20b] ROBOTIS. urdf - ROS Wiki. 2020. url: https://wiki.ros.org/urdf
(visited on 10/22/2020).

[ROB20c] Your ROBOTIS. Turtlebot3 Burger overview. ROBOTIS e-Manual. 2020.
url: https://emanual.robotis.com/docs/en/platform/turtlebot3/
overview/ (visited on 10/22/2020).

[Rob20] Open Robotics. ROS.org | Integration. 2020. url: https://www.ros.org/
integration/ (visited on 10/22/2020).

[ROS20] ROS. tf - ROS Wiki. 2020. url: http://wiki.ros.org/tf (visited on
11/16/2020).

[SNS11] Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza. Introduc-
tion to Autonomous Mobile Robots (Second Edition). 2011. isbn: 978-0-262-
01535-6.

[TB96] Sebastian Thurn and Arno Bücken. �Learning Maps for Indoor Mobile Robot
Navigation�. In: CMU-CS-96-121 (Apr. 1996), p. 38.

53

http://dx.doi.org/10.1007/11780519_16
http://link.springer.com/10.1007/11780519_16
http://link.springer.com/10.1007/11780519_16
http://gazebosim.org/
http://gazebosim.org/
http://gazebosim.org/tutorials?tut=model_editor
https://www.ros.org/core-components/
https://www.ros.org/core-components/
http://wiki.ros.org/rqt
http://wiki.ros.org/rviz
https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/
https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/
https://wiki.ros.org/urdf
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://www.ros.org/integration/
https://www.ros.org/integration/
http://wiki.ros.org/tf

[Thr02] Sebastian Thrun. �Robotic Mapping: A Survey�. In: (2002), p. 31.

[TML07] B. Tovar, R. Murrieta-Cid, and S.M. LaValle. �Distance-Optimal Naviga-
tion in an Unknown Environment Without Sensing Distances�. In: IEEE
Transactions on Robotics 23.3 (June 2007), pp. 506�518. issn: 1552-3098.
doi: 10.1109/TRO.2007.898962. url: http://ieeexplore.ieee.org/
document/4252181/ (visited on 04/26/2020).

[YJC12] Chuho Yi, Seungdo Jeong, and Jungwon Cho. �Map Representation for
Robots�. In: 2.1 (2012), p. 11.

[Zha+10] Ying Zhang et al. �Real-time indoor mapping for mobile robots with lim-
ited sensing�. In: The 7th IEEE International Conference on Mobile Ad-
hoc and Sensor Systems (IEEE MASS 2010). 2010 IEEE 7th International
Conference on Mobile Ad-Hoc and Sensor Systems (MASS). San Francisco,
CA, USA: IEEE, Nov. 2010, pp. 636�641. isbn: 978-1-4244-7488-2. doi:
10.1109/MASS.2010.5663778. url: http://ieeexplore.ieee.org/
document/5663778/ (visited on 11/11/2020).

54

http://dx.doi.org/10.1109/TRO.2007.898962
http://ieeexplore.ieee.org/document/4252181/
http://ieeexplore.ieee.org/document/4252181/
http://dx.doi.org/10.1109/MASS.2010.5663778
http://ieeexplore.ieee.org/document/5663778/
http://ieeexplore.ieee.org/document/5663778/

Statuatory Declaration

I declare that I have developed and written the enclosed work completely by myself,
and have not used sources or means without declaration in the text. Any thoughts from
others or literal quotations are clearly marked. This Master Thesis was not used in the
same or in a similar version to achieve an academic degree nor has it been published
elsewhere.

Dornbirn, 20 December 2020 Daniel Gross

55

Appendices

56

A. Listings of chapter 4

1 <gazebo r e f e r e n c e="base_scan">
2 <mate r i a l>Gazebo/FlatBlack</mate r i a l>
3 <senso r type=" ray" name=" lds_l fcd_sensor ">
4 <pose>0 0 0 0 0 0</pose>
5 <v i s u a l i z e>$(arg l a s e r_v i s ua l)</ v i s u a l i z e>
6 <update_rate>5</update_rate>
7 <ray>
8 <scan>
9 <hor i z on t a l>
10 <samples>360</ samples>
11 <r e s o l u t i o n>1</ r e s o l u t i o n>
12 <min_angle>0 .0</min_angle>
13 <max_angle>6.28319</max_angle>
14 </ ho r i z on t a l>
15 </scan>
16 <range>
17 <min>0.120</min>
18 <max>10</max> <!−−d e f a u l t : 3 . 5−−>
19 <r e s o l u t i o n>0.015</ r e s o l u t i o n>
20 </range>
21 <no i s e>
22 <type>gauss ian</ type>
23 <mean>0 .0</mean>
24 <stddev>0.01</ stddev>
25 </ no i s e>
26 </ray>
27 <plug in name=" gazebo_ros_lds_l fcd_contro l l e r " f i l ename="

l ibgazebo_ros_laser . so ">
28 <topicName>scan</topicName>
29 <frameName>base_scan</frameName>
30 </plug in>
31 </ senso r>
32 </gazebo>

Listing A.1: The changed turtlebot3_burger.gazebo.xacro �le to extend the laser
range.

57

1 <gazebo r e f e r e n c e="base_scan">
2 <mate r i a l>Gazebo/FlatBlack</mate r i a l>
3 <senso r type=" ray" name=" lds_l fcd_sensor ">
4 <pose>0 0 0 0 0 0</pose>
5 <v i s u a l i z e>$(arg l a s e r_v i s ua l)</ v i s u a l i z e>
6 <update_rate>90</update_rate> <!−−d e f a u l t : 5−−>
7 <ray>
8 <scan>
9 <hor i z on t a l>
10 <samples>360</ samples>
11 <r e s o l u t i o n>1</ r e s o l u t i o n>
12 <min_angle>0 .0</min_angle>
13 <max_angle>6.28319</max_angle>
14 </ ho r i z on t a l>
15 </scan>
16 <range>
17 <min>0.120</min>
18 <max>10</max> <!−−d e f a u l t : 3 . 5−−>
19 <r e s o l u t i o n>0.015</ r e s o l u t i o n>
20 </range>
21 <no i s e>
22 <type>gauss ian</ type>
23 <mean>0 .0</mean>
24 <stddev>0.01</ stddev>
25 </ no i s e>
26 </ray>
27 <plug in name=" gazebo_ros_lds_l fcd_contro l l e r " f i l ename="

l ibgazebo_ros_laser . so ">
28 <topicName>scan</topicName>
29 <frameName>base_scan</frameName>
30 </plug in>
31 </ senso r>
32 </gazebo>

Listing A.2: The changed turtlebot3_burger.gazebo.xacro �le to increase the update
rate.

58

B. Listings of chapter 5

1 # Sing l e scan from a planar l a s e r range−f i n d e r
2 #
3 # I f you have another ranging dev i ce with d i f f e r e n t behavior (e . g . a sonar
4 # array) , p l e a s e f i nd or c r e a t e a d i f f e r e n t message , s i n c e app l i c a t i o n s
5 # w i l l make f a i r l y l a s e r−s p e c i f i c assumptions about t h i s data
6
7 Header header # timestamp in the header i s the a c q u i s i t i o n time

o f
8 # the f i r s t ray in the scan .
9 #
10 # in frame frame_id , ang l e s are measured around
11 # the p o s i t i v e Z ax i s (counte rc lockwi se , i f Z i s

up)
12 # with zero ang le being forward along the x ax i s
13
14 f l o a t 3 2 angle_min # s t a r t ang le o f the scan [rad]
15 f l o a t 3 2 angle_max # end ang le o f the scan [rad]
16 f l o a t 3 2 angle_increment # angular d i s t anc e between measurements [rad]
17
18 f l o a t 3 2 time_increment # time between measurements [seconds] − i f your

scanner
19 # i s moving , t h i s w i l l be used in i n t e r p o l a t i n g

po s i t i o n
20 # of 3d po in t s
21 f l o a t 3 2 scan_time # time between scans [seconds]
22
23 f l o a t 3 2 range_min # minimum range value [m]
24 f l o a t 3 2 range_max # maximum range value [m]
25
26 f l o a t 3 2 [] ranges # range data [m] (Note : va lue s < range_min or >

range_max should be d i s ca rded)
27 f l o a t 3 2 [] i n t e n s i t i e s # i n t e n s i t y data [device−s p e c i f i c un i t s] . I f

your
28 # dev i ce does not prov ide i n t e n s i t i e s , p l e a s e

l eave
29 # the array empty .

Listing B.1: De�nition of the ROS LaserScan message

59

1 # transform quarte rn ion to eu l e r to get robot yaw
2 quatern ion = (
3 data . pose . pose . o r i e n t a t i o n . x ,
4 data . pose . pose . o r i e n t a t i o n . y ,
5 data . pose . pose . o r i e n t a t i o n . z ,
6 data . pose . pose . o r i e n t a t i o n .w)
7 eu l e r = t f . t r ans f o rmat i ons . euler_from_quaternion (quatern ion)
8 r o l l = eu l e r [0]
9 p i t ch = eu l e r [1]
10 yaw = eu l e r [2]
11 # convert to range 0 degree to 360 degree
12 s e l f . robot_yaw = (((yaw + 2∗math . p i) % (2∗math . p i)) ∗ 360) /(2∗math . p i)

Listing B.2: Calculation of the robots yaw.

1 Twist . msg :
2 # This exp r e s s e s v e l o c i t y in f r e e space broken in to i t s l i n e a r and angular

par t s .
3 Vector3 l i n e a r
4 Vector3 angular
5
6 −−−−
7
8 Vector3 .msg :
9 # This r ep r e s en t s a vec to r in f r e e space .
10 # I t i s only meant to r ep r e s en t a d i r e c t i o n . Therefore , i t does not
11 # make sense to apply a t r a n s l a t i o n to i t (e . g . , when apply ing a
12 # gene r i c r i g i d t rans fo rmat ion to a Vector3 , t f 2 w i l l only apply the
13 # ro ta t i on) . I f you want your data to be t r a n s l a t a b l e too , use the
14 # geometry_msgs/Point message in s t ead .
15
16 f l o a t 6 4 x
17 f l o a t 6 4 y
18 f l o a t 6 4 z

Listing B.3: De�nition of the ROS messages Twist and Vector3

60

1 de f _find_depth_jumps_using_one_scan (s e l f , scan) :
2 # works f o r ro ta t i on , forwards and backwards but de t e c t s two

po in t s on the same wal l as a gap i f they are f a r enough apart
3 depth_jumps = np . z e ro s ((l en (scan) ,) , dtype=in t)
4 f o r ang le in range (0 , l en (scan)) :
5 tmp_angle = −2
6 # check i f jump i s l a r g e enough
7 i f (scan [ang le] != np . i n f and scan [(ang le + 1) % 360] != np .

i n f and abs (scan [ang le] − scan [(ang le + 1) % 360]) >= s e l f .
min_depth_jump) :

8 # f ind the s h o r t e s t r
9 tmp_angle = angle
10
11 i f scan [ang le] > scan [(ang le + 1) % 36 0] :
12 tmp_angle = (ang le + 1) % 360
13
14 e l i f scan [ang le] == np . i n f and scan [(ang le + 1) % 360] != np .

i n f :
15 tmp_angle = (ang le + 1) % 360
16
17 e l i f scan [ang le] != np . i n f and scan [(ang le + 1) % 360] == np .

i n f :
18 tmp_angle = angle
19
20 i f tmp_angle != −2 and scan [tmp_angle] < s e l f .

max_r_to_depth_jump :
21 # sho r t e s t r must be sma l l e r then max d i s t ance
22 depth_jumps [tmp_angle] = 1
23
24 re turn depth_jumps

Listing B.4: Implementation depth discontinuity detection using a single scan.

1 de f _find_depth_jumps_using_two_scans (s e l f , scan , scan_old) :
2 scan = np . asar ray (scan)
3 scan_old = np . asar ray (scan_old)
4 scan [scan == np . i n f] = s e l f . max_r_to_depth_jump
5 scan_old [scan_old == np . i n f] = s e l f . max_r_to_depth_jump
6
7 depth_jumps = abs (scan − scan_old)
8 depth_jumps [depth_jumps < s e l f . min_depth_jump] = 0
9 depth_jumps [depth_jumps > 0] = 1
10 depth_jumps = depth_jumps . astype (i n t)
11
12 re turn depth_jumps

Listing B.5: Implementation depth discontinuity detection using a two scans.

61

1 neighbour_count = 0
2 direct_ne ighbours = True
3 i = 1
4 whi le d i rect_ne ighbours and i <= range :
5 a = d i s c o n t i n u i t i e s [(index − i) % len (d i s c o n t i n u i t i e s)] == 1
6 b = d i s c o n t i n u i t i e s [(index + i) % len (d i s c o n t i n u i t i e s)] == 1
7 direct_ne ighbours &= a or b
8 i f d i rect_ne ighbours :
9 neighbour_count += 1
10 i += 1
11 re turn count

Listing B.6: Checking for neighbour discontinuities to prevent false detection.

62

1 de f _update (s e l f , depth_jumps_last , d i scont inu i t i e s_two_scans ,
d i s c on t i nu i t i e s_s ing l e_scan s , ro ta t i on , robot_move) :

2 # ro ta t i on
3 i f r o t a t i on != 0 :
4 s t a r t = None
5 end = None
6 for_increment = None
7 search_increment = None
8
9 i f r o t a t i on > 0 :
10 # ro ta t i on r i g h t
11 s t a r t = 0
12 end = len (depth_jumps_last)
13 for_increment = 1
14 search_increment = 1
15 e l i f r o t a t i on < 0 :
16 # ro ta t i on l e f t
17 s t a r t = len (depth_jumps_last) − 1
18 end = −1
19 for_increment = −1
20 search_increment = −1
21
22 depth_jumps_last = s e l f . _correct ion (. . .)
23
24 # forwards backwards movement
25 i f robot_move > 0 :
26 depth_jumps_last = s e l f . _correct ion_forward (. . .)
27 e l i f robot_move < 0 :
28 depth_jumps_last = s e l f . _correction_backwards (. . .)
29
30 i f robot_move == 0 and ro t a t i on == 0 :
31 s t a r t = 0
32 end = len (depth_jumps_last)
33 for_increment = 1
34 search_increment = 1
35 depth_jumps_last = s e l f . _correct ion (. . .)
36
37 re turn depth_jumps_last

Listing B.7: Algorithm to update the depth discontinuities.

63

1 # −−− Forward c o r r e c t i o n s e t t i n g s −−−
2 # 0 −> 179
3 s t a r t = 0
4 end = len (depth_jumps_last) / 2
5 for_increment = 1
6 search_increment = −1
7
8 # 359 −> 180
9 s t a r t = len (depth_jumps_last) − 1
10 end = len (depth_jumps_last) / 2
11 for_increment = −1
12 search_increment = 1#1
13
14 # −−− Backwards c o r r e c t i o n s e t t i n g s −−−
15 # 180 −> 0
16 s t a r t = len (depth_jumps_last) / 2
17 end = −1
18 for_increment = −1
19 search_increment = 1
20
21 # 180 −> 359
22 s t a r t = len (depth_jumps_last) / 2
23 end = len (depth_jumps_last)
24 for_increment = 1
25 search_increment = −1

Listing B.8: Con�guration for the correction of forward and backward movement.

64

1 c o r r e c t i o n (depth_jumps , start_index , end_index , for_increment ,
search_increment , d i scont inu it i e s_two_scan , d i s c on t i nu i t i e s_s i ng l e_s can
) :

2 f o r i in d i scont inu i t i e s_two_scan :
3 i f d i scont inu i t i e s_two_scan [i] == 1 :
4 f ind_exact_pos i t ion ()
5 determine_if_previously_known ()
6 i f p r ev i ou s l y known :
7 track_and_verify ()
8 e l s e :
9 check_for_neighbours ()
10 i f no_neighbours :
11 add to depth_jumps
12 e l s e :
13 i f depth_jumps [i] > 0 :
14 i f d i s c on t i nu i t i e s_s i ng l e_s can [i] == 1 :
15 i f depth_jumps [i] < max_depth_jump_recognition_count :
16 depth_jumps [i] +=

recogn i t i on_inc r ea s e_rate
17 e l s e :
18 depth_jumps [i]−−
19 e l s e :
20 depth_jumps [i] = 0
21 re turn depth_jumps

Listing B.9: Algorithm which matches the depth discontinuities at t with t− 1.

1 sp l i t_detec t , index_2 = check_for_sp l i t ()
2 merge_detect = check_for_merge ()
3
4 i f merge_detect and not sp l i t_de t e c t :
5 merge (index , index_old_1 , index_old_2)
6 increase_count ()
7 e l i f s p l i t_de t e c t and not merge_detect :
8 index_old = None
9 i f index_old_1 != None :
10 index_old = index_old_1
11 e l s e :
12 index_old = index_old_2
13 s p l i t (index_old , index , index_2)
14 increase_count ()
15 e l i f index_old_1 != None or index_old_2 != None :
16 index_old = index_old_1
17 i f index_old == None :
18 index_old = index_old_2
19 move(index_old , index)
20 increase_count ()

Listing B.10: Algorithm to for tracking and veri�cation of depth discontinuities.

65

1 std_msgs/Header header
2 i n t32 [] depth_jumps
3 f l o a t 3 2 [] range_data
4 i n t32 r o t a t i on
5 i n t32 l i n i e a r_x

Listing B.11: ROS message de�nishen for publishing the depth discontinuity
information.

1 de t e c t_c r i t i c a l_even t s (depth_jumps , ro ta t i on , movement) :
2 #ro ta t i on
3 i f r o t a t i on != 0 :
4 s e l f . _match_rotation_left_right (depth_jumps_last , depth_jumps ,

r o t a t i on)
5
6 # forwards backwards
7 i f movement != 0 :
8 s e l f . _match_forward_backwards (s e l f . depth_jumps_last , depth_jumps ,

movement)
9
10 i f movement == 0 and ro t a t i on == 0 :
11 s e l f . _match_drift_while_sti l l_stand (s e l f . depth_jumps_last , depth_jumps

)

Listing B.12: Algorithm deciding what action to perform.

1 match_rotat ion_left_right (depth_jumps_last , depth_jumps , r o t a t i on) :
2 # ro ta t i on
3 i f r o t a t i on < 0 :
4 s e l f . _match_rotation (0 , l en (depth_jumps_last) , 1 ,

depth_jumps_last , depth_jumps)
5 e l i f r o t a t i on > 0 :
6 s e l f . _match_rotation (l en (depth_jumps_last) − 1 , −1, −1,

depth_jumps_last , depth_jumps)

Listing B.13: Algorithm to decide how to iterate over the array.

66

1 match_rotation (start_index , end_index , increment , depth_jumps_last ,
depth_jumps) :

2 depth_jumps_cp = copy . copy (depth_jumps)
3 f o r index in range (start_index , end_index , increment) :
4 index_new = None
5
6 # when at t−1 a depth jump was detec ted at t h i s po s i t i on , then try

to f i nd the new po s i t i o n o f i t
7 # check f o r >= 1 because appear s e t s to 2 , s p l i t to 3 and merge to 4
8 i f depth_jumps_last [index % len (depth_jumps_last)] >= 1 :
9 i f depth_jumps_cp [index % len (depth_jumps_cp)] == 0 :
10 index_new = s e l f . _find_new_pos_of_depth_jump(

depth_jumps_cp , index , increment)
11 s e l f . _check_move_merge_disappear (depth_jumps_last , index ,

index_new , increment)
12 e l s e :
13 # po s i t i o n s match , s e t copy to 0 so i t can not get match

with an other d i s c on t i nu i t y
14 depth_jumps_cp [index] = 0
15 s e l f . depth_jumps_last [index] = 1
16
17 # depth_jumps now conta in s a l l new depth jumps
18 f o r index in range (start_index , end_index , increment) :
19 i f depth_jumps_cp [index % len (depth_jumps_cp)] == 1 :
20 i f depth_jumps_last [index % len (depth_jumps_last)] == 0 :
21 index_old = s e l f . _find_new_pos_of_depth_jump(

depth_jumps_last , index , increment)
22 i f index_old != None :
23 #move
24 s e l f . _discontinuity_moved (index_old , index)
25 e l s e :
26 # appear
27 s e l f . _discont inuity_appear (index)
28 # po s i t i o n s matched at t h i s point , s e t copy to 0 so i t can not

get match with an other d i s c on t i nu i t y
29 depth_jumps_cp [index] = 0

Listing B.14: Algorithm to match the rotation.

67

1 match_forward (depth_jumps_last , depth_jumps) :
2 depth_jumps_cp = copy . copy (depth_jumps)
3 # 0 −> 179
4 index = 0
5 whi le index < (l en (depth_jumps_cp) / 2) :
6 index = check_pos i t i ve_d i r ec t i on ()
7 index += 1
8
9 # 359 −> 180
10 index = len (depth_jumps_cp) − 1
11 whi le index >= (l en (depth_jumps_cp) / 2) :
12 index = check_negat ive_direct ion ()
13 index −= 1
14
15 match_backwards (depth_jumps_last , depth_jumps) :
16 depth_jumps_cp = copy . copy (depth_jumps)
17 # 179 −> 0
18 index = (l en (depth_jumps_cp) / 2) − 1
19 whi le index >= 0 :
20 index = check_negat ive_direct ion ()
21 index −= 1
22
23 # 180 −> 359
24 index = len (depth_jumps_cp) / 2
25 whi le index < len (depth_jumps_cp) :
26 index = check_pos i t i ve_d i r ec t i on ()
27 index += 1

Listing B.15: Algorithm how the forward and backward movement is matched.

68

1 check_pos i t i ve_d i r ec t i on (s e l f , depth_jumps_last , depth_jumps_cp , index)
2 index_new = None
3 # move , merge , d i sappear
4 # check f o r >= 1 because appear s e t s to 2 , s p l i t to 3 and merge to 4
5 i f (depth_jumps_last [index] >= 1 and depth_jumps_cp [index] == 0) :
6 index_new = s e l f . _search_x_degree_positiv (depth_jumps_cp , index ,

5)
7 i f index_new == None :
8 index_new = s e l f . _search_x_degree_negativ (depth_jumps_cp ,

index , 3)
9 s e l f . _check_move_merge_disappear (depth_jumps_last , index ,

index_new , 1)
10
11 i f index_new == None :
12 i f depth_jumps_last [index] == 0 and depth_jumps_cp [index] == 1 :
13 # appear or s p l i t : t ry f i nd node near (with in $3^{\ c i r c }$)
14 index_new_1 , index_new_2 = s e l f . _check_split_appear (

depth_jumps_last , depth_jumps_cp , index , +1)
15 i f index_new_2 != None :
16 index = index_new_2
17 e l s e :
18 index = index_new_1
19 e l i f depth_jumps_last [index] == 1 and depth_jumps_cp [index] == 1 :
20 # gap stayed at the same index , s e t to 1
21 depth_jumps_last [index] = 1
22 # depth jump got proce s sed at t h i s po int
23 depth_jumps_cp [index] = 0
24 e l s e :
25 # depth jump got proce s sed at t h i s po int
26 depth_jumps_cp [index] = 0
27 re turn index

Listing B.16: Algorithm for checking from current index into positive direction.

69

1 match_dri f t_whi le_st i l l_stand (depth_jumps_last , depth_jumps) :
2 """
3 Match the depth jumps from prev ious s tep with the cur rent when the

robot i s not moving by i t s va lue s but s l ow ly d r i f t i n g o f .
4
5 Parameters :
6 depth_jumps_last (i n t []) : Array i nd i c a t i n g the depth jumps at t − 1
7 depth_jumps (i n t []) : Array i nd i c a t i n g the depth jumps at t
8 """
9 depth_jumps_cp = copy . copy (depth_jumps)
10 f o r index in range (0 , l en (depth_jumps_last)) :
11 # check f o r >= 1 because appear s e t s to 2 , s p l i t to 3 and merge to 4
12 i f (depth_jumps_last [index] >= 1 and depth_jumps_cp [index] == 0) :
13 # check e x i s t i n g
14 index_new = None
15
16 i f depth_jumps_cp [index − 1] == 1 :
17 index_new = index − 1
18 e l i f depth_jumps_cp [(index + 1) % len (depth_jumps_cp)] == 1 :
19 index_new = (index + 1) % len (depth_jumps_cp)
20
21 rospy . logdebug (" d r i f t whi l e s t i l l stand − seq : " + s t r (s e l f .

current_sequence_id) + " − index : " + s t r (index) + " −
index_new : " + s t r (index_new))

22 s e l f . _check_move_merge_disappear (depth_jumps_last , index ,
index_new , +1)

23
24 e l i f (depth_jumps_last [index % len (depth_jumps_last)] == 0 and

depth_jumps_cp [index % len (depth_jumps_cp)] == 1 and
depth_jumps_last [index − 1] == 0 and depth_jumps_last [(index +
1) % len (depth_jumps_last)] == 0) :

25 # appear
26 s e l f . _discont inuity_appear (index)
27 depth_jumps_cp [index] = 0

Listing B.17: Algorithm for checking from current index into positive direction.

70

1 check_move_merge_disappear (depth_jumps_last , index_old_1 , index_new ,
search_increment) :

2 i f index_new != None :
3 index_old_2 = s e l f . _check_merge (depth_jumps_last , index_old_1 ,

search_increment)
4 i f index_old_2 == None :
5 # move
6 s e l f . _discontinuity_moved (index_old_1 , index_new)
7 e l s e :
8 # merge
9 s e l f . _discontinuity_merge (index_old_1 , index_old_2 , index_new)
10 e l s e :
11 # disappear
12 s e l f . _discont inu i ty_disappear (index_old_1)

Listing B.18: Algorithm for checking for move, merge or disappear.

1 check_spl it_appear (depth_jumps_last , depth_jumps , index_new_1 ,
search_increment) :

2 index_old = None
3 index_new_2 = None
4
5 # try to f i nd index that s p l i t t e d
6 i f search_increment > 0 :
7 index_old = s e l f . _search_x_degree_positiv (depth_jumps_last ,

index_new_1 , 2)
8 e l s e :
9 index_old = s e l f . _search_x_degree_negativ (depth_jumps_last ,

index_new_1 , 2)
10
11 i f index_old != None :
12 index_new_2 = s e l f . _find_second_depth_jump_from_split (

depth_jumps_last , depth_jumps , index_new_1 , index_old)
13
14 i f index_old != None and index_new_2 != None :
15 # s p l i t
16 s e l f . _d i s con t inu i ty_sp l i t (index_old , index_new_1 , index_new_2)
17
18 depth_jumps_last [index_old] = 0
19 # depth jump got proce s sed at t h i s po int
20 depth_jumps [index_new_1] = 0
21 depth_jumps [index_new_2] = 0
22 e l s e :
23 # appear
24 s e l f . _discont inuity_appear (index_new_1)
25 depth_jumps [index_new_1] = 0
26
27 re turn index_new_1 , index_new_2

Listing B.19: Algorithm for checking for move, merge or disappear.

71

1 # Cr i t i c a lEven t .msg
2 Cr i t i c a lEven t [] events
3
4 # Cr i t i c a lEven t .msg
5 i n t32 event_type
6 i n t32 angle_old_1
7 i n t32 angle_old_2
8 i n t32 angle_new_1
9 i n t32 angle_new_2
10
11 # Event types
12 NONE = 0
13 APPEAR = 1
14 DISAPPEAR = 2
15 SPLIT = 3
16 MERGE = 4

Listing B.20: ROS message for publishing the critical events.

1 # MovedGaps .msg
2 GapMove [] gap_moves
3
4 # GapMove .msg
5 i n t32 angle_old
6 i n t32 angle_new

Listing B.21: ROS message for publishing the move of discontinuities.

1 # Col lect ionCrit ica lAndMoved .msg
2 Cr i t i c a lEven t s events
3 MovedGaps gap_moves

Listing B.22: ROS message to publish the critical events together with the moves.

1 c l a s s TreeNode :
2 # 0 i s r e s e rved f o r the root node
3 node_count = 1
4
5 de f __init__(s e l f) :
6 s e l f . id = TreeNode . node_count
7 TreeNode . node_count = TreeNode . node_count + 1
8
9 s e l f . c h i l d r en = []

Listing B.23: De�nition of the tree node in Python.

72

1 # GapTreeNodes
2 GapTreeNode [] tree_nodes
3
4 # GapTreeNode
5 i n t32 id
6 i n t32 [] ch i ld r en_ids

Listing B.24: Working de�nition of the tree node as a ROS message.

1 # GapTreeNode
2 i n t32 id
3 GapTreeNode [] c h i l d r en

Listing B.25: Python de�nition of tree node from Listing B.23 transferred directly to
ROS. This de�nition does not work due to the restriction that custom
messages do not have a default value.

73

	List of Figures
	Introduction
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of Work

	Technical Background
	ROS
	TurtleBot
	Gazebo
	Mapping
	Map Representation
	Localisation
	Simultaneous Localisation and Mapping (SLAM)

	Navigation

	Related Work
	Real-Time Indoor Mapping for Mobile Robots with Limited Sensing
	Gap Navigation Tree

	Concept
	Limitations of the Gap Navigation Tree
	Software Structure
	Detection of Depth Discontinuities
	Detection Critical Events and the Movement
	Tree Construction
	The Complete System

	Implementation Details
	Detection of Depth Discontinuities
	Input Data and Its Structure
	Depth Discontinuity Detection and Filtering
	Verification
	Published Data and Its Structure

	Critical Events and Discontinuity Movement
	Input Data and Its Structure
	Detection of Critical Events and Discontinuity Move
	Match the Rotation
	Match the Forward and Backwards Movement
	Match Drift While Still Stand
	Differentiation Between Move, Merge and Disappear
	Differentiation Between Split and Merge

	Published Data and Its Structure

	Tree Construction
	Events Messages Processing
	Published Data and Its Structure

	The Complete System

	Results
	Discussion and Conclusion
	Critical Reflection
	Limitations
	Future Work

	Bibliography
	Statutory Declaration
	Appendices
	Listings of chapter 4
	Listings of chapter 5

