
Transferring the Python framework to Java for the
robot “e-Puck” and V-REP as simulator

Bachelor Thesis
for the degree of

Bachelor of Science in Engineering (BSc)

Vorarlberg University of Applied Sciences
Computer Science – Software and Information Engineering

Advisor
Prof. (FH) Dr. Hans-Joachim Vollbrecht

Submitted by
Daniel Thomas Groß
Dornbirn, October 2018

Kurzreferat

Die Fachhochschule Vorarlberg verwendet derzeit zwei verschiedene Simulatoren, um
Inhalte zu mobilen Robotern zu lehren. Die verwendeten Simulatoren sind V-REP und
Webots. Im Masterstudium der Informatik wird der Simulator V-REP verwendet. Die
Programmierung der Steuerung erfolgt mit der Programmiersprache Python. Die
Fachhochschule Vorarlberg hat dafür ein Programmiergerüst in Python entwickelt. Im
Bakkalaureats Studium der Informatik wird der Simulator Webots verwendet. Die
Programmierung der Steuerung erfolgt mit Java. Diese Arbeit befasst sich mit der
Implementierung des bestehenden Python Programmiergerüst in Java, um den
Simulator V-REP auch im Bakkalaureats Studium verwenden zu können. Das
bestehende Python Programmiergerüst wird analysiert und die Programmiersprachen
Python und Java miteinander verglichen, um Python zu verstehen und die
Funktionalität des Programmiergerüsts richtig in Java zu übernehmen. Anhand der
Analyse des Python Programmiergerüst wird das Java Programmiergerüst
implementiert und dann auf die Performanz getestet. Der Test der Performanz soll
zeigen ob das Framework schnell genug ist um den Roboter ohne Nachteile zu steuern.
Um die Verwendbarkeit des Frameworks zu testen, wird ein kleines Beispiel Programm
präsentiert.

I

Abstract

The Vorarlberg University of Applied Sciences currently uses two different simulators
to teach the students about mobile robots. During the Masters in Computer Science
program, the simulator V-REP is used. The robot controllers are programmed using
the programming language Python. Therefore, the Vorarlberg University of Applied
Sciences developed a framework using Python. In the Bachelor of Computer Science
program, the simulator Webots is used and the controllers are programmed using Java.
The topic of this thesis is to translate the existing Python framework to Java, to be
able to use the simulator V-REP during the Bachelor studies. The existing Python
framework is analysed, and the programming languages Python and Java are compared
to understand Python and be able to translate the framework correctly to Java. Based
on the analysis of the Python framework, the Java framework gets implemented and is
then tested regarding its performance. The performance test shall show if the
framework is fast enough to control the robot without drawbacks. To test the usability
of the framework an example application is created.

II

Contents

List of figures V

1. Introduction 1
1.1. Problem Statement . 1
1.2. Aim of the Work . 1
1.3. Methodological Approach . 3

2. State of the art 4
2.1. Controlling a robot . 4

2.1.1. Architectures to control a robot 4
2.1.2. Why a framework? . 7
2.1.3. Real robot vs simulated robot . 11

2.2. The robot e-Puck . 11
2.2.1. Virtual e-Puck of V-REP . 12

2.3. Simulators V-REP and Webots . 12
2.3.1. Webots . 12
2.3.2. V-REP . 14

2.4. Python framework . 16
2.4.1. DifferentialWheels . 17
2.4.2. EPuck . 17
2.4.3. EPuckVRep . 19
2.4.4. EPuckReal . 22

2.5. Java . 22
2.5.1. Existing libraries for the robot e-Puck for V-REP 22
2.5.2. Camera image . 23
2.5.3. Java API provided by V-REP . 26

2.6. Comparison Java and Python 2.7 . 26
2.6.1. Object Oriented Programming . 26
2.6.2. Comparison . 27

2.6.2.1. Basic classes . 27
2.6.2.2. Inheritance . 30
2.6.2.3. Interfaces . 32
2.6.2.4. Abstract classes . 32

3. Requirements 34

III

4. Implementation 35
4.1. Framework . 35

4.1.1. DifferentialWheels . 35
4.1.2. EPuck . 41
4.1.3. EPuckVRep . 44

4.1.3.1. Loading the remote API library 44
4.1.3.2. Reading the sensor values 47
4.1.3.3. Getting the camera image 48
4.1.3.4. Setting the motor speed 49

4.2. Example application . 50
4.2.1. Problem . 50
4.2.2. Analysing the existing controller 51
4.2.3. New controller . 54

5. Evaluation 56
5.1. Performance of the framework . 56

5.1.1. Definition of performance testing 56
5.1.2. Performance testing the framework 57
5.1.3. Testing environment . 58
5.1.4. Problems encountered during testing 59
5.1.5. Test results . 60
5.1.6. Analysing the test results . 62

5.2. Own experience . 62
5.3. Evaluation for the 5th semester . 62
5.4. Client / Server separation . 63

6. Future work 64

Bibliography 65

Statuatory Declaration 69

Appendices 70

A. Code snippets of section 4.1.1 71

B. Code snippets of section 4.1.3.1 73

C. Figures of the performance testing results 76

IV

List of Figures

1.1. Python framework . 2
1.2. Environment for the example application in V-REP 2

2.1. Example of a loop control architecture 5
2.2. Example of a central module with task modules. 6
2.3. Example of a task tree for autonomous walking. 7
2.4. Example of the layering of the subsumption architecture 8
2.5. Example of the blackboard architecture 8
2.6. Sketch of a sequence diagram of a controller calling remote API methods

without a framework. 9
2.7. Sketch of a sequence diagram of a controller calling remote API methods

using the framework. 10
2.8. Webots e-puck sensor monitor. 14
2.9. V-REP API framework. 15
2.10. Python framework small . 17
2.11. Class differential wheels . 18
2.12. Class EPuck . 19
2.13. V-REP synchrounous mode illustration 20
2.14. V-REP blocking function call illustration 21
2.15. Class EPuckVRep . 21
2.16. Class EPuckVReal . 22
2.17. Different variations of the put method of the OpenCV class Mat 25
2.18. Class diagram for multiple inheritance 31

4.1. Full UML class diagram of the Java framework. 36
4.2. Abstract class DifferentialWheels of the Java framework. 37
4.3. Binary operation with shifting and linking. 40
4.4. Abstract class EPuck of the Java framework. 41
4.5. Class EPuckVRep of the Java framework. 44
4.6. In the example application with the default controller of V-REP the robots

turn to each other and drive in parallel. 51
4.7. Position of the proximity sensors on the robot e-Puck. 52

5.1. Scene for performance test. 58
5.2. Error during testing with threads. 59

C.1. JProfiler results for test 01. 77
C.2. Results for test 01 using the Java system method. 77

V

C.3. JProfiler results for test 02. 78
C.4. Results for test 02 using the Java system method. 78
C.5. JProfiler results for test 03. 79
C.6. Results for test 03 using the Java system method. 79
C.7. JProfiler results for test 04. 80
C.8. Results for test 04 using the Java system method. 80
C.9. JProfiler results for test 05. 81
C.10.Results for test 05 using the Java system method. 81
C.11.JProfiler results for test 06. 82
C.12.Results for test 06 using the Java system method. 82
C.13.JProfiler results for test 07. 83
C.14.Results for test 07 using the Java system method. 83
C.15.JProfiler results for test 08. 84
C.16.Results for test 08 using the Java system method. 84

VI

1. Introduction

With the help of simulators, robotic software development is greatly simplified. The
development and testing of a software and directly testing it is made possible
everywhere, and cost can be much lower. A physical robot can cost thousands of
Euros. There are some simulators that can be as expensive as a physical robot, but
there are also simulators that are available for free. Simulators have their own
programming language to control a robot, and often they also provide an application
programming interface (API). With an API it is possible to communicate with the
simulator and also to control a robot inside the simulator. Such an API can be very
complex to use and therefore frameworks are developed. A framework is not only used
to simplify the control of a robot, but also to define the robot’s functionalities.

1.1. Problem Statement

The Vorarlberg University of Applied Sciences currently uses two different simulators.
During the Bachelor studies Computer Science - Information and Software Engineering
the simulator Webots is used in the 5th semester [54]. For the elective course
Autonomous Systems, of the Msters studies of Computer Science, the simulator V-REP
is used [50]. The simulator V-REP is available to Universities and students for free as
the version V-REP PRO EDU [49]. Webots, however, has high licence costs [49].
Therefore, this thesis is to reduce the costs. To be able to use the simulator V-REP
during the Bachelor studies, it must be possible to control the virtual model of the
robot e-Puck in Java as the students learn Java and not Python. V-REP offers a
remote API for Java to communicate with the simulator, but there is currently no
framework for Java to control the virtual robot e-Puck. Therefore, a framework is
needed which makes it possible to program a controller in Java.

1.2. Aim of the Work

The aim of this work is to create a framework in Java to control the robot e-Puck.
e-Puck is a robot for educational purpose [4]. It has two wheels and some sensors. The
sensors on the robot are sound sensors, accelerometer, proximity sensors, a camera and
ground sensors. In the major Autonomous Systems of the Computer Science Masters
program the robot simulator V-REP and the real robot e-Puck are used. Therefore, a
framework in Python was developed by the Vorarlberg University of Applied Sciences.
As shown in Figure 1.1 the Python framework allows for the control of the virtual

1

Figure 1.1.: Picture shows the design of the python framework

Figure 1.2.: Environment for the example application V-REP. Two robots following a
line while driving towards each other. They also must avoid the obstacles
on the path.

version of the robot and the real robot. The real robot is controlled by using a
Bluetooth connection and the connection to V-REP based on TCP/IP. The new
framework shall have the same functionality as the already existing framework in
Python, but for now we only want to control a robot in the simulator V-REP. As the
framework shall be extended with functionality to control the physical robot in the
future, the architecture needs to be easy to extend. The aim is to replace the simulator
Webots with the simulator V-REP. The simulator Webots is currently used during the
5th semester. Therefore, the new framework needs to be easy to understand and a good
documentation needs to be provided for the students. Additionally, to the
documentation a example application shall be provided for the 5th semester students.
The example program shall show the basic principals of the framework to make it
easier for the students to write their first program. Figure 1.2 shows how the
environment for the example application looks like. The two robots are following a line
while they are driving towards each other. When the robots meet they should pass
each other and get back to the line and continue following it. In the path there are also

2

some obstacles which the robots must avoid.

1.3. Methodological Approach

Without any prior knowledge of the Python framework for the robot e-Puck, a class
diagram of the framework was created first. To analyse and understand the framework,
it was necessary to learn the fundamentals of Python. Based on the class diagram of
the Python framework, the Java framework was then designed with a class diagram.
This class diagram was used as reference for implementation. Changes in the design
during implementation, were immediately updated in the class diagram. Before
proceeding with the example application, the performance and functionality of the
framework was tested. The documentation was created by using Javadoc and adding a
description of every methods of the framework.

3

2. State of the art

2.1. Controlling a robot

A software, which controls a robot, needs to process various information. The main
task of a robotic software is to plan its future path. To plan this path some
information is needed. One possible way of getting such information is through a
sensor. Therefore, the software needs to be able to read data from a sensor. By
interpreting this data, it is possible to decide what to do next. The next step, after
interpreting the data, could be to set the speed of the wheels, if the robot is a wheeled
robot. Another action, based on the results interpreted from the data, could be to
move a camera in a certain direction or any other moveable part at the robot [41].

Mobile Robotics Architectures defines ways on how robots are controlled and therefore
how data is requested, processed and applied. Section 2.1.1 discusses the requirements
for Mobile Robotics Architectures and explains some of the common architectures.
Following this, Section 2.1.2 explains where this framework is to be used in these
architectures.

2.1.1. Architectures to control a robot

For an architecture, to control a robot, four different requirements can be defined:

1. Deliberative and reactive behaviour
Deliberate and reactive implies that specific actions are taken to achieve a goal
while also reacting to the environment. For example, a robot needs to follow a
line but also avoid obstacles [41].

2. Allow uncertainty
Allowing uncertainty means allowing the robot to be able to function at any
time. The software must be able to handle information that might be incomplete,
unreliable or contradictory at any time [41].

3. Account for danger
The architecture must be able to handle certain circumstances like a door which
is expected to be closed being open. It should be able to react and avoid a crash
with the door. Such properties of an architecture relate to fault tolerance,
performance and safety. [41].

4

Figure 2.1.: Example of a loop control architecture [41].

4. Flexibility for the designer
The architecture allows the software developer to replace main components like
sensors or motors [41].

Based on these four requirements common architectures are: the Control Loop
Architecture, Layered Architecture, Task Control Architecture, Subsumption
Architecture and Blackboard Architecture.

Control Loop Architecture
The control loop architecture is defined by its continuous loop where a sensor value is
read, values for actuators are being calculated and values are set. Because components
interact with each other by providing data and because components are being executed
when data is available, it may be described as a data flow architecture. Figure 2.1
shows a very simple example of a loop control architecture. The controller gets a new
sensor value (for example values of a distance sensor), checks if there are any obstacles
and then sets the motor speed [41, 25].

Layered Architecture
The idea of the layered architecture is to split up the control of the robot. Splitting up
means to make abstract layers that connect to each other. Each of the layers has a
specific area of responsibility and after a layer has processed the data, the results get
passed on to the next layer. Instead of passing the results to the next layer, it is also
possible to notify the next layer that there is new data available. For example, the
responsibility of the layer sensor interpretation is to analyse the data from one sensor.
The layer sensor integration performs a combined analysis of different sensor inputs.
Different to business applications, where this happens from top-down, for robotics this
happens bottom-up. The start therefore is for example a sensor that returns a new
value [41, 26]. From top to bottom of the architecture, the layers are as following:

5

Figure 2.2.: Example of a central module with task modules [23].

1. Supervisor

2. Global planning

3. Control

4. Navigation

5. Real-world modeling

6. Sensor integration

7. Sensor interpretation

8. Robot control

Task Control Architecture
The task control architecture is a high-level operating system. It consists of a central
module which is general and task-specific modules, shown in Figure 2.2. The central
module is responsible for routing messages and maintaining task control information.
The robot-dependent information is processed by the task-specific modules. Task trees,
like the one shown in Figure 2.3, build the base for the task control architecture. Child
tasks get initiated by its parent tasks. Between tasks temporal constraints can be
defined. The communication between tasks and task-modules is done by sending
messages to a central server. The central server redirects the message to tasks which
have registered at the central to handle them [41, 27, 29, 23].

Subsumption Architecture
The subsumption architecture is a robot control system which uses a layering
methodology. Each level describes a behaviour which is autonomous in itself. The

6

Figure 2.3.: Example of a task tree for autonomous walking [23].

activation of a level is done by an activation condition which is a Boolean. Each
behaviour has an action as a result. The behaviour action of a higher level suppresses
all the actions of the lower levels, which is indicated with the arrows pointing
downwards in Figure 2.4. Figure 2.4 shows different levels of a subsumption
architecture. For example, let the behaviour of level 0 be finding a box, pushing a box
the behaviour of level 1 and detach from box the behaviour of level 2. If the robot is
currently pushing the box and the activation condition for level 2 is fulfilled, the level 2
behaviour action will suppress the behaviour action of level 0 and level 1 [8].

Blackboard Architecture
The Blackboard Architecture approach uses a central unit that stores all information.
Modules let the central unit, the blackboard, know which information they are
interested in. If the requested data is available, it will be returned immediately. If the
information of interest is not available, it will be returned when another module inserts
this data [41, 28]. Figure 2.5 shows an example of the Blackboard Architecture.

2.1.2. Why a framework?

As all the architectures from Section 2.1.1 showed, there is a point in the architecture
where a communication with the actuators and the sensors takes place. Without a
framework the software engineer directly addresses the required actuator or sensor of
the robot or the API of the simulator. The sequence diagram sketch, shown in Figure
2.6, shows a controller with the control loop architecture that calls the remote API of
V-REP. The sequence diagram shows that the software engineer must look up how to
use the API of V-REP. For all needed actuators and sensors, methods need to be
implemented to write and read values. If the software engineer only uses a simulator

7

Figure 2.4.: Example of the layering of the subsumption architecture [8].

Figure 2.5.: Example of the blackboard architecture [10].

8

Figure 2.6.: Sketch of a sequence diagram of a controller calling remote API methods
without a framework.

9

Figure 2.7.: Sequence diagram of a controller calling remote API methods using the
framework.

like V-REP, to run and test his program, this can be an acceptable solution. If the
software engineer wants to test the controller on the real robot, the current code needs
to be changed. Changing the code can be very time consuming. The software engineer
needs to find out how to communicate with the real robot. New methods need to be
implemented to get sensor values and set the values of actuators. This is where the use
of a framework makes sense. Figure 2.7 shows a sequence diagram sketch of the
controller from Figure 2.6 using the framework. The framework represents the robot
and implements methods to communicate with actuators and sensors. Methods called
by the software engineer are only those of the framework object ePuckVRep, every call
to the right of the class EPuckVRep happens inside the framework. thus, the
framework removes the problem of needing to cope with the real robot’s API or the
API of a simulator when programming the controller. The University’s Python
framework implements classes to control the real robot and the robot in the simulator
V-REP. It also has an abstract representation of the robot e-Puck to make switching
between the real and the virtual robot easy. The abstraction and implementation of
the Python framework is discussed in detail in Section 2.4.

10

2.1.3. Real robot vs simulated robot

Controlling a virtual robot can be different from controlling a real robot. There will be
a big difference in the values received from the real robot compared to the simulator.
Sensor values inside a simulator are calculated values. Taking the proximity sensor as an
example, the simulator exactly knows the distance between the robot and an obstacle
and can calculate the exact proximity value. To make the value more realistic the
simulator adds noise to the value. Even with this added noise the values will never be
like the ones received from a real robot. This means a controller, developed and tested
using a simulator, will not work the same on the real robot. Due to the real sensor
values, which have more noise than the ones of the simulator, the controller will need
some adjustment to make it work again. Slight differences of the traction of the wheels
between the real robot and the simulated robot can make a difference when controlling it.
A model of a robot in the simulator will get close to the real robot but will not replicate
it exactly. An advantage of the simulator can be the step by step simulation. V-REP
offers such a functionality where the simulator performs a specific amount of simulation
steps and then pauses the simulation. By default, the remote API function calls of
V-REP are asynchronousl. A simulation will advance or progress without taking into
account the progress of the remote API client [46]. If for example V-REP is running on
a different computer then the controller, a slow network can cause a bad simulation. A
long delay will cause the controller to wait while the simulator is still running. With the
synchronized option the simulator only performs a simulation step when the controller
tells him to do so. Thus slow communication is not a problem anymore.

2.2. The robot e-Puck

e-Puck is the result of a project started at the Ecole Polytechnique Federale de
Lausanne. It is a collaboration between the Laboratory of Intelligent System,
Autonomous Systems Lab and Swarm-Intelligent System group. The goal of the
project was to develop a robot for educational purpose at university level. They
defined the following five features as important for a robot with educational purpose:

• The mechanical structure should be simple to understand and has a good clean
modern system which is represented by the electronics, processor structure and
software.

• To cover as many educational fields as possible it should be extendible, have
many sensors and a fast processor.

• To be very user friendly it should be small, such that it can fit on the table next
to the computer. It should be battery driven and require almost no wiring and
optimal working comfort.

• Because it is for students it should be robust and in case of damage the repair
cost should be small and the repair should be simple.

11

• It should be cheap to buy.

To give everyone the opportunity to improve the hardware of the robot, the
documentation of the hardware is published with the Open Source Hardware Licence.
At the time of writing this thesis, two versions of the robot are available. Version one
was released in November 2015 and two years later version two was released [5].
The latest robot of the project is the e-Puck2 which is available since the beginning of
2018 [7].

All versions of e-Puck are equipped with distance sensors, an accelerometer and
gyroscope, camera and several microphones. The e-Puck2 additionally has a compass.
The actuators of the robot are two stepper motors, a speaker and LEDs. It is possible
to upgrade the robot with a ground sensor, range and bearing sensor, RGB panel,
Gumstix extension, omnivision or own design boards with sensors by using the I2C
bus. Communication with the robot is possible via USB, Bluetooth 2.0, Bluetooth Low
Energy as well as WiFi in the case of an e-Puck2. The initial version only allowed
communication by RS232 and Bluetooth 2.0 [6, 16].

2.2.1. Virtual e-Puck of V-REP

V-REP comes with the virtual model of the robot e-Puck. All sensors and actuators
of the basic e-Puck also exist in the virtual version of the robot. However, V-REP also
supports a ground sensor which an e-Puck is not equipped with by default. In the V-
REP model the ground sensor is implemented via a camera, which is shown in Code
2.1. There is no detail information about the e-Puck model of V-REP available, from
the variable names of the code, the used vision sensor is a color sensor. The bottom left,
bottom middle and bottom right pixel of the color sensor are passed on as the ground
sensor values.

img=simGetVisionSensorImage(colorSensor)
data={img[1],img[22],img[94]}
simSendData(sim_handle_chain,0,’EPUCK_groundSens’,simPackFloatTable(data))

Code 2.1.: Three pixels of the camera image are defined as the ground sensor values on
the virtual e-Puck of V-REP.

2.3. Simulators V-REP and Webots

In this section an overview of the two simulators is given. First the simulator Webots is
discussed and then the simulator V-REP.

2.3.1. Webots

Webots is the robot simulation software that is currently used in the 5th semester at
the Vorarlberg University of Applied Sciences [54]. The students use this software to

12

learn the basics of programming a robot for different tasks. Webots has APIs for C,
C++, Java, Python and Mathlab to control a robot remotely [53]. For the students of
the Vorarlberg University of Applied Sciences the possibility to program in Java is very
important. Java is the programming language that is taught starting from the 2nd

semester and therefore the main programming language during the bachelor’s study.
The installation of Webots includes a Java library as a JAR-file which is used to
program in Java.

Programming the robot in Webots is not a straight forward process. Webots has a
build-in code editor. The editor has a small issue, as it does not support auto
completion which is a feature that makes development a lot easier. Some students
experienced problems while compiling, as the system variables needed to be set
properly such that they point to the Java JDK. Even with correct system variables
there can be problems with the compiler. Most of the students therefore switched to
another Integrated Development Environment (IDE) like Eclipse or Intellij.
Programming in another IDE requires after compilation the class-files of Java to be
copied from the project output to another directory. This directory then must have the
same name as the java class which contains the main-function. Very important for
students is the possibility to debug. Even if an IDE is used to program, it is not
possible to debug the code because Webots requires the output files. Working with real
robots debugging will not be possible as the program gets flashed on to the robot. But
for a student this feature would be very helpful to locate problems faster and also to
understand the robot better. Beside a missing debug feature another problem is the
complicated use of an external JAR library with a controller. If a controller uses a
library, it needs to be added to variable CLASSPATH manually like it is described on
the Webots website [56].

Webots has the helpful feature monitor view, that lists all monitor values as shown in
Figure 2.8. The window shows all the sensor values of e-puck making it very helpful to
tune the program. In my case and for many other students this window almost never
worked. Which is unacceptable for the high costs of this simulation software. In the
control interface, shown in Figure 2.8, it is also possible to switch from the simulation
to the real e-Puck. The commands are then sent by Bluetooth to the real robot.

Webots is based on a licence system where you can choose from different packages.
The different packages have different features of the software unlocked [55]. The
package with the highest cost is the Webots PRO for CHF 3450 (at the time of writing
this thesis) which includes all features. Webots EDU has limited access to the features
of Webots and costs CHF 320 per licence. One licence is valid for one computer
running an instance of Webots. Hence for a class of 50 students, 50 licences are needed
which results in very high costs as on education licence is CHF 320. Furthermore, the
licences are only valid for a specific version of the softwareand do not qualify for
software updates. Therefore the use of a new release of Webots requires the purchase
of new licenses. Webots is available for Mac, Linux and Windows.

13

Figure 2.8.: Webots e-puck sensor monitor.

2.3.2. V-REP

Virtual Robot Experimentation Platform (V-REP) is a robot simulator with an
integrated development environment [50]. This software is currently used at the
Vorarlberg University of Applied Sciences theirs in Masters degree program in
Computer Science in the specialisation autonomous systems. The programming is done
by using the remote API for Python.

V-REP has multiple possibilities to control a robot simulation. Figure 2.9 shows an
illustration of the V-REP framework, taken from their website [47]. With Main Client
Application V-REP terms the executable. The Main Client Application handles the
tasks of running the simulator, loading and unloading plugins, loading a scene or
model and handles running simulations [44].
Native V-REP supports programming of the robots with Lua as an embedded script.
"An embedded script is a script that is embedded in a scene (or model), i.e. a script
that is part of the scene and that will be saved and loaded together with the rest of the
scene (or model)" [43].
With plugins and add-ons, it is possible to extend the functionality of V-REP by
writing own functions. The plugins and add-ons are loaded automatically by V-REP at
the program start-up. For plugins, "the language can be any language able to generate
a shared library and able to call exported C-functions (e.g. in the case of Java, refer to
GCJ and IKVM). A plugin can also be used as a wrapper for running code written in
other languages or even written for other microcontrollers (e.g. a plugin was written
that handles and executes code for Atmel microcontrollers)" [45]. The add-ons of
V-REP are written in Lua [42]. V-REP distinguishes between add-on functions and
add-on scripts. The add-on functions will be executed once the user selects them.

14

Figure 2.9.: V-REP API framework [47].

"Add-on scripts are executed constantly while the simulator is running, effectively
running in the background. They should only execute minimalistic code every time
they are called, since the whole application would otherwise slow down" [42].
With the remote API, ROS interface and the BlueZero interface V-REP is accessible
from almost any possible external application or hardware according to their website
[47]. "The Robot Operating System (ROS) is a flexible framework for writing robot
software. It is a collection of tools, libraries, and conventions that aim to simplify the
task of creating complex and robust robot behavior across a wide variety of robotic
platforms" [22]. "BlueZero (in short, "B0") is a cross-platform middleware which
provides tools for interconnecting pieces of software running in multiple threads,
processes or machines. It has some similarities with ROS, although it only focuses on
providing communication paradigms (client/server and publisher/subscriber) and
message transport (based on ZeroMQ), while being agnostic to message serialization
format or common protocols and data structures" [2].
To support more programming languages V-REP has a remote API [51, 52]. The
remote API is available for Java, C/C++, Python, Matlab, Octave and Lua. "The
remote API functions are interacting with V-REP via socket communication (or,
optionally, via shared memory) in a way that reduces lag and network load to a great
extent. All this happens in a hidden fashion to the user. The remote API can let one
or several external applications interact with V-REP in a synchronous or asynchronous
way (asynchronous by default), and even remote control of the simulator is supported
(e.g. remotely loading a scene, starting, pausing or stopping a simulation for instance).
The word Synchronous is used in the sense that each simulation pass runs
synchronously with the remote API application" [51].

15

Since Lua is the main programming language in V-REP to program robots, it would be
the easiest way to use this programming language. The students in the Bachelor
studies, however, learn the programming language Java from the second semester
onwards. V-REP will be used in the fifth semester. By then the students are very
comfortable with Java and can focus on applying patterns and architectures. Changing
the programming language could cause another difficulty and slow down the learning
process as they first have to learn a new language. To avoid this problem the
framework for java is needed.

When communicating with V-REP using the remote API it acts like a server. The
functionality is implemented via a plugin, which is automatically loaded with V-REP
at the program start-up. A client, which is programmed in one of the supported
languages, can connect to the server and control a robot. It is possible that more than
one client connects to the server. This makes it possible to control several robots in
one V-REP instance. To control the robot, using the remote API, V-REP includes all
needed libraries in the installation. Each supported programming language has its own
set of libraries.

Other features of V-REP include a multiple physics engines that can be chosen from,
inverse kinematic calculation, collision detection, distance calculation, building a scene,
support for different proximity sensor types and modes of operation, vision sensors and
recording simulations for later play back. The detailed information about all the
features can be found on the website of V-REP [50].

V-REP is available in three different versions. There are two versions of V-REP that
are free to use. The one version is the V-REP player which can play back simulations.
V-REP Pro EDU is a non-limited version of V-REP for educational use. The
educational licensing says it is free for Hobbyists, students, teachers, professors ,
schools and universities [49]. The commercial version is V-REP Pro which is for
companies, research institutions, non-profit organisations and foundations. Also, the
complete source code of V-REP is available on GitHub.

2.4. Python framework

The python framework developed by the Vorarlberg University of Applied Sciences
consists of the four classes DifferentialWheels, ePuck, EPuckVRep and EPuckReal. The
classes DifferentialWheels and EPuck are abstract classes. As the UML class diagram
(in Figure 2.10) shows. The classes EPuckVRep and EPuckReal inherit from EPuck
and EPuck from DifferentialWheels. To control the robot in the simulator V-REP the
class EPuckVRep is used. With the class EPuckReal the real robot can be controlled.

16

Figure 2.10.: Python framework inheritance

2.4.1. DifferentialWheels

The DifferentialWheels class is an abstract base class which describes the methods of a
robot with differential wheel locomotion. Differential wheel locomotion means a robot
with two fixed wheels, which can be driven independently. The implemented methods
of this class are methods needed to control the robot e-Puck but also apply to any
other robots with two wheels and the same sensors. Figure 2.11 shows the
DifferentialWheels class with all its methods. Looking at the e-Puck’s actuators, the
wheels can be generalised. To control the wheels a method is needed to set the speed
of the left motor and the right motor. Any other robot with two wheels can use this
method as well. Therefore, the class implements a method to set the speed. As sensors
like the distance sensor, accelerometer, gyroscope and camera can be expected to be
found also on other robots and not only the e-Puck, DifferentialWheels defines
methods to retrieve those values from a robot. Additionally, a robot might need
activation of the sensors and thus it implements methods to activate them.
Furthermore, the class implements an observer pattern for the sensor values and the
camera image. This pattern is implemented to allow the software engineer to create,
for example, a layered architecture to control a robot. The observer of sensor values is
notified, which sensor values have changed. Camera image observers receive the
camera image if it has changed.

2.4.2. EPuck

The class EPuck (Figure 2.12) represents the robot e-Puck and is a high-level proxy of
the robot (virtual or real) for the controller. This class defines the methods, which
return the sensor values and the camera image. These methods distinguish if the

17

Figure 2.11.: DifferentialWheels class

18

Figure 2.12.: UML diagram of the class EPuck

camera image or sensor values are updated by a thread, sensor values being requested
all at once or if the sensor value or camera image are requested separately. Requesting
separately means that only the value of a single sensor is requested. Requesting all at
once means that only one call is made to get all values. As the Figure 2.12 shows, the
class EPuck makes use of the two classes SensingThread and ImageThread. EPuck
implements those two classes to be able to allow the use of the observer pattern which
is defined by the class DifferentialWheels. The observer pattern allows the software
engineer to use different architectures like it is explained in Section 2.4.1. For both
threads the interval can be set when initialising the threads, which gives the
opportunity to adjust it independently.

2.4.3. EPuckVRep

The class EPuckVRep (Figure 2.15) is a proxy of the virtual robot e-Puck of V-REP
for the controller. Therefore, this class implements all abstract methods that are
defined by its parent class EPuck. Using the remote API, sensor values and the camera
image are requested, and the motor speed can be set. To be able to use the remote
API functionality of V-REP the classes vrep.py and vrepConst.py are needed. Those
two classes are provided by V-REP and need to be included in the folder of the
controller to access the remote API. The library comes with the installation of V-REP
and is the remoteApi.so for Unix, the remoteApi.dll for Windows or the
remoteApi.dylib for Darwin. Depending on the platform the application is running on,

19

Figure 2.13.: Illustration of the V-REP synchronous mode [46].

one of the three remote Api files needs to be provided. EPuckVRep makes use of the
possibility to run the simulation of V-REP in synchronous mode, which was mentioned
in Section 2.3.2. Therefore, the methods startsim and stepsim are implemented. The
method startsim needs to be called to initiate the simulation. With the method
stepsim the amount of simulation steps performed by V-REP can be defined. Using
this method, a very precise simulation, independent of the frame rate, can be achieved.
Figure 2.13 shows an illustration of the synchronous mode, the illustration is taken
from V-REP [46]. While the function simxGetJointPosition and simxSetJointPosition
are called, the simulator is not running the simulation. The simulation starts running
for one simulation step after calling simxSynchronousTrigger. After finishing one
simulation step the simulator waits for the next command to continue the simulation.
The calls made to the API by the framework are blocking function calls, like in the
illustration for the synchronous mode. Figure 2.14 shows the illustration of the
blocking function call. Using the blocking function call causes a delay on the client
side. The block takes as long as it takes for the simulator to return the requested value
or to acknowledge that the command was processed.

20

Figure 2.14.: Illustration of the V-REP blocking function call [46].

Figure 2.15.: UML diagram of the class EPuckVrep

21

Figure 2.16.: UML diagram of the class EPuckReal.

2.4.4. EPuckReal

Since the class EPuckRobot was not developed by the Vorarlberg University of Applied
Sciences it will not be ported to Java. Hence this class will not be covered in detail.
The class EPuckReal (Figure 2.16) is the proxy of the real robot. Because this class
inherits from the class EPuck all the abstract methods are implemented. The class
EPuckRobot implements methods to send commands to the robot. The connection to
the robot is established by Bluetooth. To connect to the robot, the class EPuckRobot
needs the MAC address of the robot.

2.5. Java

This part covers the available libraries that can be used for the implementation of the
framework. Existing libraries for V-REP to control the e-Puck robot, libraries for the
camera image and the Java classes that are provided by V-REP will be discussed.

2.5.1. Existing libraries for the robot e-Puck for V-REP

At the time of writing this thesis only one project could be found that controls the
robot e-Puck inside of V-REP. The project is available on github and was developed by
the user AurelienC [1]. The implemented functionality is very limited and specific for a

22

certain problem. The class VRepHelper.java that can be found in the directory
src/fr/esisar/px504/simulation implements a few simple methods like reading sensors,
move forward, turn, start / stop the simulation and moving to a specific point. For
example, the method (Code 2.2) that reads the distance sensors returns the
information if the sensor detected an obstacle. Since the functionality is very limited
and too specific, this project was only taken as a reference on how to interact with the
remote API.

/**
* Ge the state of sensors of E-Puck robot
* @param operationMode The type of query (opMode in V-Rep)
*/

private void refrechSensorsWithSettings(int operationMode) {
IntW ret = new IntW(0);

vrep.simxGetIntegerSignal(clientId, "sensors", ret, operationMode);

boolean[] bits = new boolean[8];
for (int i = 7; i >= 0; i--) {

bits[i] = (ret.getValue() & (1 << i)) != 0;
}

this.sensors = bits;
}

Code 2.2.: Method to read sensor values by AurelienC

2.5.2. Camera image

When requesting the image from the API, the return value is an array. A pixel is
represented by three entries in the array for red, green and blue, respectively. For
further use of the image it might be good to store the image in a format which makes
it easy to use.

When determining the best data format to store the image a few factors have to be
taken into account. When controlling a robot, it is very important that the access to
the information of an image is fast. It is also very important that converting from the
API format to the other format does not take too much time. The second factor is the
maintenance.In case of choosing a third-party library to store the image, the
framework is dependent on the maintainer of this library to fix problems. The time
between reporting an error and publishing of a new library version where the error is
fixed can be long. When developing a on library fixing errors can be done immediately
and therefore make maintenance easier. The third factor is the compatibility to
libraries like Java Advanced Imaging (JAI), Catalano or OpenCV [13, 15, 18]. A

23

preference for a specific image processing library already determines the data format
and can therefore make the decision much easier.

The data type that OpenCV uses, to store images, is their own type Mat as it can be
found in the Java documentation of the library [17]. The type Mat is a matrix and the
image can be loaded in two different approaches. The first approach is to create the
Mat object from an image file. Code 2.3 shows an example from tutorialspoint on how
to read an image from a file. The second approach is to create a new Mat object and
then use the put method, shown in Figure 2.17, of the Java documentation, to assign
the image [17]. The put method offers various data types on how the image can be
provided. Code 2.4 shows the two lines of code which are needed to load and assign
the image. Since saving the image to a file and then load it into OpenCV is time
consuming, the e-Puck framework must offer a possibility to provide the image as a
data type which can then be used in combination with the put method.

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.imgcodecs.Imgcodecs;

public class ReadingImages {
public static void main(String args[]) {

//Loading the OpenCV core library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

//Instantiating the Imagecodecs class
Imgcodecs imageCodecs = new Imgcodecs();

//Reading the Image from the file
String file ="C:/EXAMPLES/OpenCV/sample.jpg";
Mat matrix = imageCodecs.imread(file);

System.out.println("Image Loaded");
}

}

Code 2.3.: Example of reading a image with OpenCV [38].

Mat mat = new Mat(width, height, CvType.CV_8UC3);
mat.put(0, 0, data); //data is can be any type of the accepted data types

Code 2.4.: Using put to load the image in OpenCV.

JAI uses the data type RenderedImage to store images [12]. The most common way to
load an image is shown in Code 2.5, which is an example from Oracle, where the image

24

Figure 2.17.: Different variations of the put method of the OpenCV class Mat

is loaded from a file [13]. Another possibility to create a RenderedImage is from the
data type ParameterBlock [11]. With the method add of ParameterBlock a
BufferedImage can be added [14]. By using the method getRenderedSource of
ParameterBlock a RenderedImage can be generated. Code 2.6 shows an example how
to get a ReneredImage from a BufferedImage.

String filename = "// path and name of the file to be read,
that is on an accessible filesystem //";

RenderedImage image = JAI.create("fileload", filename);

Code 2.5.: Loading a image from a file in JAI

ParameterBlock pb = new ParameterBlock();
pb.add(myBufferedImage);//myBufferedImage could be the image from the API

//converted to a BufferedImage */
RenderedImage renderedImage=paramBlock.getRenderedSource(0);

Code 2.6.: Creating a RenderedImage from a BufferedImage with JAI

The Java class BufferedImage is a good option for storing the camera image. It is
possible to use it with JAI and also with OpenCV. The BufferedImage can be used
with OpenCV because it provides a method which returns a byte array. The class also
has methods to retrieve width, height and the RGB (red, green and blue) value for a
specific pixel. However, for example, the RGB value of a specific pixel is returned as a
single value. From the single value, the rgb values must be obtained by some
calculations. A solution for this could be to create a class which holds a BufferedImage
and offers methods to get the red, green and blue value of a pixel.

25

2.5.3. Java API provided by V-REP

The remote API is one of five different possibilities to communicate with the simulator
[47]. V-REP lists a 6th possibility which is using plugins. It is listed separately because
these plugins are not part of V-REP. V-REP provides some classes to be able to use
the remote API. These classes come with the installation of V-REP. The subdirectory
/programming/remoteApiBindings/ of the program directory contains directories for
multiple programming languages. The supported programming languages for the
remote API are:

• Java

• Lua

• Matlab

• Octave

• Python

• Urbi

V-REP provides two different Java API libraries for Linux and Windows. There is a
remote API library file for the 32bit system and one for the 64bit system. For Mac it is
only one file. Beside some example applications, which use the remote API of V-REP,
the directory Java contains Java classes that are needed to work with the remote API.
The most important class is remoteApi.java. This class implements methods to access
the API of V-REP and also loads the library file. The other class files provided are
data types. V-REP provides these classes since they don’t use the standard Java data
types as return values for the API functions.

2.6. Comparison Java and Python 2.7

Even though, Java and Python, are object-oriented programming languages, they have
some differences in their implementation. This first section covers the definition of
object-oriented programming. In the second section Python 2.7 and Java are compared
to each other.

2.6.1. Object Oriented Programming

The Cambridge Dictionary describes object-oriented as "based on groups of
information and their effects on each other, rather than on a series of instructions" [3].

Looking up OOP on Techterms, it says “refers to a programming methodology based
on objects, instead of just functions and procedures. These objects are organized into
classes, which allow individual objects to be grouped together. An "object" in an OOP

26

language refers to a specific type, or "instance," of a class. Each object has a structure
similar to other objects in the class but can be assigned individual characteristics. An
object can also call functions, or methods, specific to that object. Object-oriented
programming makes it easier for programmers to structure and organize software
programs. Because individual objects can be modified without affecting other aspects
of the program, it is also easier to update and change programs written in
object-oriented languages.” [33].

Techtarget defines it as: “Object-oriented programming (OOP) is a programming
language model organized around objects rather than "actions" and data rather than
logic. Historically, a program has been viewed as a logical procedure that takes input
data, processes it, and produces output data.” [31].

2.6.2. Comparison

In this section the two programming languages are compared to each other to get an
overview on how they work.

2.6.2.1. Basic classes

Code 2.7 shows how a class is defined in Python. A class is designed with class
followed by the class name.

class foo:
def __init__(self):

#inside "__init__" declarations and initialisations can be done

Code 2.7.: Defining a class in Python

Code 2.8 shows the same class implemented in Java. Compared to Python there is a
modifier which defines the class as public. This is the common way, but it is also
possible to leave the public away which then also means that the class is public.

public class foo{
public Foo(){

//The constructor can be public or private
}

}

Code 2.8.: Defining a class in Java

Now let us have a look at how instance and class variables are handled in both
programming languages. Code 2.9 and Code 2.10 implement the same variables. But
there is a considerable difference in the syntax.

27

class foo:
x = 4711 #class variable

def __init__(self):
self._y = 959 #"private" instance variable

Code 2.9.: Instance and class variables in Python

public class Foo{
public static int x1 = 4711; //Declaration and initialisation
//of public class variable

private int y; //Declaration of instance variable

public Foo(){
y = 959; //Initialisation of instance variable

}
}

Code 2.10.: Instance and class variables in Java

One difference between Python and Java is that there are no data types for variables
and no declaration of a variable in Python. In Python all variables outside the
constructor, which is __init__(self), are class variables and all variables initialised
inside the constructor are instance variables. In Java a declaration of the variable with
the data type is needed and then the variable can be initialised. The declaration and
initialisation can also be done in one step like it is done for the class variable.
The next difference is that there are no modifiers like in Java to define if the variable is
public, private or protected. Every variable is public in Python but there is a coding
convention which says that you should not touch a variable which has an underscore
before the name. So, the variable _y inside the constructor in Code 2.9 should not be
touched from the outside. Defining a variable as a constant like in Java with final is
also not possible. Again, this is handled by the coding convention which says that a
variable with a name in capital letters should not be changed.

The declaration of methods and functions in Python is also very different. Code 2.11
shows an example class with methods and functions. Again, in Python there is no
modifier to define if the method is public, private or protected. With the underscore
before the name you can indicate that the method should not be used from the
outside. Furthermore, the signature contains no information if the method has a return
value and the parameters passed have no data type. However there is an option to set
a default value for a parameter which is done by assigning a value to the parameter
with value=none like it is done for function f().

28

class foo:
x = 4711

def __init__(self):
self._y = 959

def f(self, value=none)#method is public
if value is none:

value = [] #empty array
modify here

def _sum(self, a,b): #method is "private"
sum = a + b
return a

def incrementY(self): #public method increments _y
_y++

Code 2.11.: Instance and class variables in Python

In Java the same class would look like shown in Code 2.12. Declarations of methods in
Java have a modifier which defines if the method is public, private or protected. If the
method has a return value the data type of it is defined. The data type of parameters
is also defined. If a method or function returns nothing, this is indicated with void.
There is no direct representation of the function f() from the Python code in Java as it
is not possible to give a parameter a default value.

29

public class Foo{
public static int x1 = 4711;

private int y;

public Foo(){
y = 959;

}

//is private and returns an integer value
private int sum(int a, int b){

int sum = a + b;
return sum;

}

//is public and increments y
public void incrementY(){

y++;
}

}

Code 2.12.: Instance and class variables in Java

2.6.2.2. Inheritance

Inheritance is an important feature of object-oriented programming. Both
programming language have inheritance and Code 2.13 shows the syntax for
inheritance in Python. For the given syntax the derived class must be in the scope of
the base class. It is also possible to inherit from a class in another module. Therefore,
the module name is put before the class name like shown in Code 2.14.

class DerivedClassName(BaseClassName):
def __init__(self)

#declaration and initalisation of a variable could be done here

Code 2.13.: Inheritance in Python

class DerivedClassName(modname.BaseClassName):
def __init__(self):
super(DerivedClassName, self).__init__()

.

.

Code 2.14.: Inheritance from a class in an other module in Python

30

In terms of inheritance Python also allows multiple inheritance. Code 2.15 shows the
syntax for multiple inheritance. The super constructor must be called before any other
call in the constructor. The rule to search for an attribute is depth-first from left to
right. This means if an attribute is not found in DerivedClassName, the Base1 will be
recursively searched and if it is not found it goes on to the next base class. This is the
solution in Python for the so called diamond problem of multiple inheritance [21].

class DerivedClassName(Base1, Base2, Base3):
def __init__(self):
super(DerivedClassName, self).__init__()

.

.

.

Code 2.15.: Multiple inheritance in Python

The diamond problem is a problem that occurs with multiple inheritance. The name
comes from the shape of the class diagram that results out of multiple inheritance, as
shown in Figure 2.18. Imagine SuperClass implements a method foo() that ClassA and
ClassB override but is not overridden by ClassC. Which method is called when calling
foo() on ClassC ? Python solves this problem with the described rule.

Figure 2.18.: Class diagram for multiple inheritance

In Java only single inheritance is allowed. The syntax for the inheritance is shown in
Code 2.16. Important here is that the constructor of the super class must be the first
call in the constructor of the derived class.

31

public class FooExtended extends BaseFoo{
public FooExtended(){

super();
}
.
.
.

}

Code 2.16.: Inheritance in Java

2.6.2.3. Interfaces

Java has the possibility to define interfaces. They are used to group a set of methods
that belong together. All the methods defined in an interface have an empty body. An
example for an interface is shown in Code 2.17 and the usage of it in Code 2.18. The
compiler will check if the methods of the interface are implemented. If not all methods
are implemented, the compilation will fail. In Python there does not exist something
like an interface.

interface Interfaceable{
void foo(int value);

}

Code 2.17.: Interface implementation in Java

public class ClassA implements Interfacable{
private int i;
public ClassA(){

i = 0;
}
void foo(int value){

i += value;
}

}

Code 2.18.: Class which implements an interface in Java

2.6.2.4. Abstract classes

Abstract classes are useful as they make it possible to declare methods without an
actual implementation of it. They are used to build up a class hierarchies where the
first class is an abstract class and defines the behaviour which all subclasses have to

32

implement. It is not possible to instantiate an abstract class. In Python there are a
few steps needed to create an abstract class. To create a abstract class the class
ABCMeta must be imported from the module abc (abstract base class). This class has
to be assigned to the variable __metaclass__ which is a variable that describes the
behaviour of the class. Code 2.19 shows an example for defining an abstract class.

from abc import ABCMeta
class BaseClass:

__metaclass__ = ABCMeta
.
.
.

Code 2.19.: Defining an abstract class in Python

To define an abstract method in Python a decorator needs to be added to an empty
method. The decorator is also part of the ABCMeta class and is called abstractmethod.
An empty method is created with the pass statement. When the pass statement is
executed, nothing happens as it is null. Code 2.20 shows the use of the decorator and
the pass statement.

from abc import ABCMeta
class BaseClass:

__metaclass__ = ABCMeta

@abstractmethod
def foo(self)

pass

Code 2.20.: Abstract class with an abstract method in Python

Java uses a class modifier and a method modifier to make it abstract. If we take a look
at the Code 2.21 we can see how easy it is compared to Python. The method just
consists of the declaration with the additional modifier abstract.

public abstract BaseClass{

abstract void foo();
}

Code 2.21.: Abstract class with an abstract method in Java

33

3. Requirements

The current functionality available in the Python framework should also be available in
the Java framework, with the exception that the Java framework does not need to be
able to control the real robot. Controlling the real robot is at this point not needed as
the students will only work with the simulator. Furthermore, including the
functionality, of controlling a real robot, would exceed scope for a Bachelor Thesis.
Since the students in the 5th semester often faced problems with the loading of the
V-REP libraries, it would be wishful to be able to solve this problem with the Java
framework. The Java framework therefore, should automatically detect the operating
system and load the correct library.

For the framework it is important that the camera image format has good
compatibility. The reason being that two different libraries for image processing, that
are used at the Vorarlberg University of Applied Sciences. During the 5th semester of
the Bachelor program, the students learn the basics of image processing using the
library JAI. The library OpenCV is used in the elective course Autonomous Systems
during the Masters program in Computer Science. For being capable for switching
between the libraries, the camera image format needs to be compatible with both.

34

4. Implementation

Besides the implementation of the framework, creating a controller for a specific
problem is also part of the thesis. This section covers details on the implementation of
the framework and the application example.

4.1. Framework

This part covers how the framework for the robot e-Puck is structured and also shows
how the calls to the remote API work.

The Java framework is built with the same structure as the Python framework. Figure
2.10 shows how the classes inherit in the Python framework. The difference in the Java
framework is that the class for the real e-Puck is not implemented since it falls outside
the scope of this thesis. Figure 4.1 shows the full class diagram for the Java
framework. The aim, while designing the framework, was to make use of the object
orientation of Java. Therefore, some new classes were introduced to handle some of the
sensor values. In the next sections each part of the framework will be covered in detail.

4.1.1. DifferentialWheels

Like for the Python framework, the class DifferentialWheels describes a robot with
differential wheel locomotion. The class is an abstract class as it just describes the
robot and can be applied to any robot with a differential wheel locomotion. Figure 4.2
shows the class diagram for the DifferentialWheel class, with the other classes it uses.
Compared to the Python framework the Java framework makes use of the object
orientation for the values of some of the sensors.

In the Python framework arrays are used for the sensor values. Each index of the array
has a specific value. Working with this array means, that knowledge of what index
maps to which sensor value is always required. This problem can be solved by using
the adapter pattern, also known as wrapper. Geeksforgeeks defines the adapter pattern
as: "The adapter pattern converts the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t otherwise because of
incompatible interfaces." [9]. The classes Acceleration, WheelEncode and Pose use the
adapter pattern to make the returned information easier accessible. The class
Acceleration takes the array with the values and stores it. Three methods then make

35

Figure 4.1.: Full UML class diagram of the Java framework.

36

Figure 4.2.: Abstract class DifferentialWheels of the Java framework.

37

information of the array accessible. Each of the methods accesses the corresponding
index of the array and returns the value of it. The class Speed is a very simple class
which is used to set the motor speed and also to return the current speed. The Python
framework uses an array for this. Using an array is inconvenient as you always need to
remember which index represents which side of the robot. The Speed class implements
two methods for this purpose, each side has its own method.

Handling of the camera image is solved by creating a class which defines the camera
image. The approach, of creating an own class, is chosen to keep the data type as basic
as possible. A basic data type gives developer the opportunity work with the image
processing framework of his choice. Therefore, CameraImage stores the image as
BufferedImage which is a standard Java data type. CameraImage has methods to get a
specific pixel, set the color value of a specific pixel and a method to get the image as a
BufferedImage. The class CameraImagePixel holds the RGB value of a specific pixel.
It is used to return the pixel color information. BufferedImage returns the color value
of a pixel only as an integer. From the integer value the values for red, green and blue
then need to be retrieved by performing bit operations. Setting a pixel of a
BufferedImage is only possible with an integer value. The method setPixel takes the
values for red, green and blue and creates this integer value and sets the pixel color.
Code 4.1 shows how the conversion from the separate color values to an integer value is
done within the setPixel method.

38

/**
* Set a pixel of the image
* @param x x position of the pixel
* @param y y position of the pixel
* @param r Red value of the pixel
* @param g Green value of the pixel
* @param b Blue value of the pixel
*/
public void setPixel(int x, int y, int r, int g, int b){

int rgb = 0;
//Set red value
//Red value from bit 16 till 23
if(r > 255){

//Shift 16 bits to the left
rgb = rgb | (255<<16);

} else if(r > 0){
rgb = rgb | (r<<16);

}

//Set green value
//green value from bit 8 till 15
if(g > 255){

//Shift 8 bits to the left
rgb = rgb | (255<<8);

} else if(g > 0){
rgb = rgb | (g<<8);

}

//Set blue value
//blue value from bit 0 till 7
if(b > 255){

rgb = rgb | 255;
} else if(b > 0){

rgb = rgb | b;
}

_image.setRGB(x,y,rgb);
}

Code 4.1.: Method setPixel of CameraImage

Figure 4.3 shows what the binary operations in Code 4.1 do. Using bit operations the
red, green and blue value of rgb are set. The bits for the red value are from bit 16 to
23, green from bit 8 to 15 and blue from 0 to 7. To set the red value, first a shift of 16
bits to the left is performed on either the r value or 255. With « from the right 0 are
added, for red 16. For green a shift of 8 bits is needed and blue does not need a shift.

39

Figure 4.3.: Binary operation with shifting and linking.

The resulting value is then OR linked with rgb. As a result the value of r is now stored
in rgb from bit 16 to 23.

When a pixel is requested by calling the method getPixel, first the integer value is
retrieved from the BufferedImage and this integer value is then passed to the
constructor of CameraImagePixel. Inside the constructor the integer value of red, green
and blue value are extracted and saved separately. Code 4.2 shows the constructor of
CameraImagePixel.

/**
* Constructs new camera image pixel from the given rgb int value.
* @param rgb Integer value from a BufferedImage with
* BufferedImage.TYPE_INT_RGB
*/
public CameraImagePixel(int rgb){
_r= (rgb>>16)&255;
_g= (rgb>>8)&255;
_b= (rgb)&255;

}

Code 4.2.: Constructor of CameraImagePixel

The class DifferentialWheels has the possibility to be observed. The interfaces
SensorObserver and CameraImageObserver define what other classes need to
implement to be able to register as an observer. Observers get the information on

40

Figure 4.4.: Abstract class EPuck of the Java framework.

which sensor values have changed or get the latest camera image. There is an enum
defining all the sensors to let the observer know which sensors have changed. The
enum makes it easy to check if the sensor value of interest has changed.
DifferentialWheels itself only implements methods where no information about the
robot is needed. Implemented are methods to enable sensors and methods which are
needed to implement the observer pattern. The website Tutorialspoint says that the
observer pattern is used, when there are multiple objects (observers) that require
information if something changed about one object (observable) [37]. In case of a
modification all the objects are then notified. The class DifferentialWheels is in this
case the observable and a controller could be the observer. Code A.1 and Code A.2
show the methods of DifferentialWheels to allow to be observed.

4.1.2. EPuck

The abstract class EPuck describes the robot and inherits from the abstract class
DifferentialWheels. Figure 4.4 shows the class EPuck in detail. The class defines
abstract methods for refreshing the sensor values and camera image. The methods are
abstract as the refreshing of the sensor values and camera image is different for the real
e-Puck and the e-Puck in a simulator. Implemented methods are those that return the
sensor values to, for example, a controller and those for the threading. EPuck
implements methods to update the sensor values and the camera image within a
thread.

The use of threads simplifies a controller, because it is only necessary to start the
thread at the beginning. After the thread is started, the only call, for the sensor values
and camera image, is the call of the method which returns the value. Code 4.3 shows
the method to return the proximity sensor values. It is important for all the methods,
that the returned sensor values are synchronised. Not only accessing needs to be done

41

synchronized, synchronization is also important for writing to the variable. This is
important when the values are updated by using the thread. Using a thread, it can
happen that the controller requests the sensor value while the thread writes the new
values. This is especially important for the motor values. This is also mentioned in
Section 4.1.3.4 which covers setting of the motor speed as this is specific for the real
e-Puck and virtual e-Puck.

@Override
public double[] getProximitySensorValues() throws
RobotFunctionCallException, SensorNotEnabledException {

synchronized (_proximitySensorValues) {
if (!_hasOwnSensingThread && !_senseAllTogetherEnabled) {

_proximitySensorValues = refreshProximitySensorValues();
}

return _proximitySensorValues;
}

}

Code 4.3.: Method of the class EPuck to return the current proximity sensor values

The threads for updating the sensor values and camera image are implemented by using
Timer of java.util [35]. Timer can be used to schedule tasks which then are executed
in a background thread. A scheduled task needs to be inherited from TimerTask [36].
Timer offers multiple ways of scheduling. One of the possible ways of scheduling is
fixed-delay execution where the task is repeated periodically with a delay. The chosen
delay for the task is 0ms as shown in Code 4.4 for the method which creates the image
refreshing thread. The thread to refresh the sensor values, is created in the same way.

public void createImageThread() {
if (!_hasOwnCameraThread) {

_cameraImageRefreshTimer.schedule(new CameraImageRefreshTask(this),
0, _cameraCycleTime);
_hasOwnCameraThread = true;

}
}

Code 4.4.: Method to create the thread which refreshes the camera image.

42

/**
* This tasks refreshes the camera image.
*/

public class CameraImageRefreshTask extends TimerTask {

private EPuck _ePuck;

/**
* Constructs new task
* @param ePuck Instance of the ePuck of which
* the camera image needs to refreshed
*/
public CameraImageRefreshTask(EPuck ePuck){

_ePuck = ePuck;
}

@Override
public void run() {

try {
CameraImage img = _ePuck.refreshCameraImage();
_ePuck.setCameraImage(img);

} catch (CameraNotEnabledException e) {
e.printStackTrace();

} catch (RobotFunctionCallException e){
e.printStackTrace();

}
}

}

Code 4.5.: Class CameraImageRefreshTask

The classes CameraImageRefreshTask and SensorValueRefreshTask are two very
simple classes. Both inherit from TimerTask and implement the method run() which
is defined by the abstract class TimerTask. Code 4.5 shows the class
CameraImageRefreshTask. When the timer is started it periodically calls run(). Inside
this method the latest camera image is requested and then saved. For the class
SensorValueRefreshTask the method run() calls the method refreshSensorValues() of
the class EPuck, as shown in Code 4.6.

@Override
public void run() {

_ePuck.refreshSensorValues();
}

Code 4.6.: Method run() of the class SensorValueRefreshTask

43

Figure 4.5.: Class EPuckVRep of the Java framework.

4.1.3. EPuckVRep

Like in the Python framework the class EPuckVRep is a proxy of the virtual robot
e-Puck of V-REP for the controller. The implemented functionality is the same as it is
in the Python framework. Methods are provided to get the sensor values, get the
camera image and set the motor speed. The possibility of running the simulation in
synchronous mode, as it is explained in Section 2.4.3, is also implemented. Special to
this class is the integrated loading of the library. The automatic loading of the library
greatly simplifies the use of the remote API. Section 4.1.3.1 covers the library loading
in detail.

4.1.3.1. Loading the remote API library

As shown in Figure 4.5 the class EPuckVRep uses the remote API library. To make
the framework easier to use, the LibraryLoader was developed. The LibraryLoader
checks which operating system the application is running on and loads the correct
library file. As shown in the class diagram in Figure 4.5 the LibraryLoader consists of
two static methods. The public method loadLibrary calls the private method loadLib
based on specific operating system (OS) the application is running on. Code B.1 shows
the method loadLibrary. If a supported OS is detected, the file name of the library is
constructed and passed on to the loadLib method. The detection of the OS is done
with the class OSValidator.

OSValidator uses environment variables to detect the OS type and architecture the
application is running on. It has two methods to detect Windows, one method to
detect MacOSX and three methods to detect Linux systems. Code 4.7 shows the

44

variables for the OS and the architecture type. The variable OS stores the OS type
and the variables windowsArch and windowsWow64Arch are used to detect if it is a
64bit Windows OS or a 32bit Windows OS.

private static String OS = System.getProperty("os.name").toLowerCase();

private static String windowsArch =
System.getenv("PROCESSOR_ARCHITECTURE");

private static String windowsWow64Arch =
System.getenv("PROCESSOR_ARCHITEW6432");

Code 4.7.: Variables of the OSValidator for the architecture type and OS type.

To define the OS and architecture the strings are tested on certain criteria. Code B.2
shows how the Windows OS and the architecture is detected. The application is
running on a Windows OS if the value of the variable OS starts with win. To detect if
it is a 32bit or a 64bit system the variables windowsArch and windowsWow64Arch are
tested if one of those ends with 64.

A Linux system can be detected by checking the value, of variable OS, to end with nix,
nux, aix or sunos as shown in code B.3. If the Linux OS is a 32bit or 64bit can be
detected by checking the environment variable os.arch. If this variable ends with 64
the OS is a 64bit OS. The MacOS is detected by checking if the value of the variable
OS contains mac, as it is shown in Code B.4.

After detecting the OS, the correct library is loaded from the resources of the
framework. The library is then copied into a folder as a temporary file which will be
deleted when the application closes. After the copy process is finished the library is
loaded so it can be used by the application. The method loadLib, shown in Code 4.8
does the loading from the resources, copying and loading.

45

/**
* Puts library to temp dir and loads to memory
*/
private static void loadLib(String path, String fileExtension) {

try {
//Create a stream containing the library which needs to be written
//to the drive
InputStream in = LibraryLoader.class.getResourceAsStream(path);
//Path to the folder with lib
String libFolder = System.getProperty("java.io.tmpdir")

+File.separator+"vrep";
//Create the folder for lib file
new File(libFolder).mkdirs();
//Write to a tmp file so that multiple instances can be run
File fileOut = File.createTempFile(LIBREMOTEAPIJAVA,"."

+ fileExtension,new File(libFolder));

//Define that this temporary file needs to be deleted when the
//applications exits
fileOut.deleteOnExit();
System.out.println("Writing library to: "

+ fileOut.getAbsolutePath());

//Create a output stream to temporary file and start copying
OutputStream out = FileUtils.openOutputStream(fileOut);
IOUtils.copy(in, out);

//Close all streams
in.close();
out.close();
try {

//Load the library
System.load(fileOut.toString());

} catch (Exception ex){
System.out.println(ex);
System.exit(0);

}
} catch (Exception e) {

System.out.println("Failed to load required library \n"
+ e.getMessage());

}
}

Code 4.8.: Method loadLib() of the class LibraryLoader.

To automatically load the correct library when a new object of the remote API is

46

instantiated, a small change needed to be made in the remoteAPI.java class. The
remoteAPI.java class contains a static area where the library is loaded. The method
gets replaced with the loadLibrary method of LibraryLoader. Code B.5 shows the old
type of loading the library and code B.6 shows the new version using the
LibraryLoader. In the old version with System.loadLibrary("remoteApiJava") on the
system is searched for the library which needed to be registered manually beforehand.

4.1.3.2. Reading the sensor values

The sensor values can be requested in different ways. Either each sensor value can be
retrieved on its own or all the sensor values are requested at once. For this purpose the
remote API methods simxGetStringSignal and simxCallScriptFunction are used. Both
of the remote API methods call the Lua script methods of the model in the simulator.
In both cases the method is called as a blocking call such that the execution continues
when the results are received. Code 4.9 shows part of the method senseAllTogether.
When calling the remote API method an ID, in this example stored in the variable
_clientID, needs to be provided. This ID is returned when the connection to the
simulator gets established by using the remote API method simxStart. This method
needs to be called once before starting the communication. With
_signalName+"_allSens" the model and the method of its Lua script is defined. The
variable _signalName is constructed from the model name, in this case epuck, and the
port number on which the model is mapped to in the simulator V-REP. All the remote
API methods return a integer error code value. By checking the integer value
returnCode, it is possible to determine if the call was successful. To return the result
values, the remote API makes use of call by reference for objects. The method
simxGetStringSignal needs an empty char array object as parameter. The object is
defined by V-REP and contains a char array and some other methods to modify the
char array. When the call was successful, the object contains the return value of the
Lua script method called. It is important for the remote API calls to make sure that
only one call at a time is made. Therefore, the Java method synchronized with the
object lockAPI is used for every remote API call. From the returned array then the
proximity sensor values, light sensor values, ground sensor values, accelerometer values
and wheel encoder values can be extracted and stored.

//Create the array for the return values
CharWA inCharWA = new CharWA(1);
int returnCode = 0;
synchronized (lockAPI) {
returnCode = _vrepRemote.simxGetStringSignal(_clientID, _signalName +
"_allSens", inCharWA, _vrepRemote.simx_opmode_buffer);

}

Code 4.9.: Requesting all sensor values with one remote API call in Java

47

When the values of a single sensor type are requested, the remote API method
simxCallScriptFuntion is used. This method calls specific function of the Lua script
from the robot model. Code 4.10 shows part of the method
refreshProximitySensorValues for requesting the proximity sensor values. The
_clientID is again the ID returned from establishing the connection and the
_robotName is the name of the robot model in the simulator. All the models in a
simulation have a unique name by which they can be identified. Besides defining the
type of Lua scripted called and the definition that the call should act blocking, the
function of the Lua script needs to be specified and a return object provided. The
return object provided needs to match with the defined return value of the Lua script
function. If the return code indicates that the call was successful the value of the
return object can be stored.

FloatWA outFloat = new FloatWA(_numProximitySeonsors);
int returnCode = 0;
synchronized (lockAPI) {
returnCode = _vrepRemote.simxCallScriptFunction(_clientID, _robotName,
_vrepRemote.sim_scripttype_childscript, "getProxSensorsForRemote", null,
null, null, null, null, outFloat, null, null,
_vrepRemote.simx_opmode_blocking);

}

Code 4.10.: Example of the values of one sensor type are requested from the remote
API in Java.

4.1.3.3. Getting the camera image

The camera image is also requested with the remote API method
simxCallScriptFunction as described in Section 4.1.3.2. For the camera image the Lua
script function getCameraSensorsForRemote is called. This function returns a float
array of pixel colors. One pixel of the image uses three entries in the array as every
color value has its own entry. Therefore, the size of this array is
image-width*image-hight*3. To properly store the image some additional calculation is
necessary. Code 4.11 shows how the data of the array is converted such that it matches
the image formate of the framework. First a new image object is created with the
correct size. Then the RGB value for a pixel is determined and stored in the image
object at the correct position. Since the array consists of a concatenation of pixel rows
the position of a pixel in the array and its RGB values can be easily calculated. The
start of a new pixel row in an array is calculated with y*_imageWidth. A specific pixel
of a row can be select by adding the x value so the calculation is y*_imageWidth+x.
Because a pixel uses three entries in the array now, the value needs to be multiplied
with 3 and the new calculation looks as like, 3*(y*_imageWidth+x). To get the
corresponding color value, the offset needs to be added. For example, the index in the
array for the color red of a pixel can then be calculated with

48

3*(y*_imageWidth+x)+0. Since the values returned are between 0 and 1, a
multiplication by 255 is needed to map it correctly. The framework also corrects the
orientation of the image when storing it. Originally the image returned is
up-side-down, to make the developer’s life easier the image is stored rotated by 180◦.

//Create a new image object and set each pixel
CameraImage tmpImg = new CameraImage(_imageWidth, _imageHeight);
for (int y = 0; y < _imageHeight; y++) {
for (int x = 0; x < _imageWidth; x++) {
//The values from V-REP are between 0 and 1 so it is necessary to multiply
//with 255 to get the correct value
int r = (int) (rgbFloatValues[3 * (y * _imageWidth + x) + 0] * 255);
int g = (int) (rgbFloatValues[3 * (y * _imageWidth + x) + 1] * 255);
int b = (int) (rgbFloatValues[3 * (y * _imageWidth + x) + 2] * 255);
//Set the pixel with the corresponding colour. The image returned from
//V-REP is up-side-down so and with "(_imageHeight - 1) - y" this is
//corrected so the image has the correct orientation.
tmpImg.setPixel(x, (_imageHeight - 1) - y, r, g, b);
}

}

Code 4.11.: Converting the array representation of the image to an image object.

4.1.3.4. Setting the motor speed

Setting the motor speed is done by using the remote API method
simxCallScriptFunction. The name of the Lua script function called is
setVelocitiesForRemote. Code 4.12 shows part of the framework method to set the
motor speed. As the speed values for the motors are expected as a FloatWA, which is
defined by the remote API, an object containing these values has to be created. The
value for the left motor has to be stored at index one and the value for the right motor
at index two. By checking the return code it is possible to determine if the call was
successful. There is no other return value by the function setVelocitiesForRemote. For
this method there are two reasons why the synchronisation is needed. The first reason
is the requirement of the remoteAPI, as it was mentioned earlier. More important is,
to avoid that multiple threads set the motor speed at the same time. Only on thread
should be allowed to set the motor speed at a time. If every thread would set the
motor speed at the same time, it result in unwanted behaviour of the robot since some
values might never get processed by the robot.

49

//setVelocitiesForRemote float[] --> [0]= left , [1] = right
FloatWA speedFloatWA = new FloatWA(2);
float[] speedFloats = speedFloatWA.getArray();
speedFloats[0] = (float) speed.getLeft();
speedFloats[1] = (float) speed.getRight();

int returnCode = 0;
synchronized (lockAPI) {
//Send command to VRep
returnCode = _vrepRemote.simxCallScriptFunction(_clientID, _robotName,
_vrepRemote.sim_scripttype_childscript, "setVelocitiesForRemote", null,
speedFloatWA, null, null, null, null, null, null,
vrepRemote.simx_opmode_blocking);

}

Code 4.12.: Setting the motor speed of the robot.

4.2. Example application

The example application is used to test the functionality and usability of the developed
framework. First the problem is explained, followed by the analysis of the controller
provided by V-REP and then how the problem was solved.

4.2.1. Problem

The scenario for the example application, which is shown in Figure 1.2, consists of two
robots with the task to follow the line. Those to robots in the scenario are driving
towards each other. At one point the two robots will meet on their path, have to pass
each other and continue following the line. Besides passing each other they also have
to avoid two obstacles and continue following the line. V-REP provides a controller
written in Lua for this scene. However, the provided controller is not working properly.
Following the line and avoiding the fixed obstacles works without any problems.
Avoiding a moving obstacle, in this case the other robot, is not working. When the two
robots meet and detect each other, they rotate in the same direction and continue
driving parallel like it is shown in Figure 4.6. The existing controller shall be analysed
to find the cause of the unexpected parallel driving and then implement the improved
version of the controller in Java.

50

Figure 4.6.: With the default controller of V-REP in the example application the
robots turn to each other and drive in parallel.

4.2.2. Analysing the existing controller

The controller that comes with the scene distinguishes three cases for the robot. Code
4.13 shows the controller as pseudo code. The first case (code line 7 till 18) is that the
ground sensors are read, a line detected and no obstacle is detected in front of the
robot. To detect an obstacle in front of the robot the proximity sensors 1,2,3 and 4,
shown in Figure 4.7, are used. The second case (code line 21 till 34) gets activated
when there are no obstacles in front of the robot. If there is no obstacle in front, the
sides of the robots are checked for obstacles (code line 34 till 40). To check if an
obstacle is on the side of the robot the sensors 1 and 6 are used. If the first two case do
not get activated the robot has an obstacle in front and avoids it. The Braitenberg
vehicle concept is used for avoiding the obstacle in front and also to keep a safe
distance to the obstacle to the left or right. A Breitenberg vehicle uses a sensor to
motor connection. This simple connection leads to a seemingly cognitive behaviour, as
it is explained in the course materials of the University of Sussex [40]. Keeping a
constant distance to the object to the left or right works flawlessly. Avoiding the
obstacle in front of the robot does not work for every scenario. If all the sensors, used
to detect the obstacle in front, deliver approximately the same value, the robot will not
move around the obstacle. The robot will get stuck, it is moving but rather driving
into the obstacle then trying to avoid it. This is happening as the applied Braitenberg
accelerates the wheels on the side where the obstacle is detected and lets the opposite
wheels run reverse. The robot detects an obstacle on the right side (sensor 3 and 4)
and then tries to move to the left. At the same time an obstacle is detected on the left
(sensor 1 and 2) and the robot tries to drive to the right side. This Braitenberg
behaviour is called fear. The applied Braitenberg behaviour also explains the situation

51

Figure 4.7.: Position of the proximity sensors on the robot e-Puck.

shown in Figure 4.6 occurs. To make the two robots pass each other, a new solution
needs to be found for the detection and avoidance of an obstacle in the front. The
solution is discussed in Section 4.2.3.

52

1 //Braitenberg weights for the 4 front prox sensors (avoidance):
2 int[] braitFrontSens_Motor = new int[]{1,2,-2,-1}
3 //Braitenberg weights for the 2 side prox sensors (following):
4 int[] braitSideSens_Motor = new int[]{-1,0}
5 double speedLeft = 0
6 double speedRight = 0
7 if(groundSensorValuesUpdated && lineDetected && !obstacleInFrontOfRobot){
8 if(groundSens[0] > 0.5){
9 speedLeft = maxSpeed

10 } else {
11 speedLeft = maxSpeed * 0.25
12 }
13 if(groundSens[2] > 0.5){
14 speedRight = maxSpeed
15 } else {
16 speedRight = maxSpeed * 0.25
17 }
18 } else {
19 speedLeft = maxSpeed
20 speedRight = maxSpeed
21 if(!obstacleInFrontOfRobot){
22 if(proxSensDist[0]>(0.25 * 0.05)){
23 speedLeft = speedLeft+maxSpeed*braitSideSens_Motor[0] *
24 (1-proxSensDist[0]/0.05))
25 speedRight = speedRight+maxSpeed*braitSideSens_Motor[1] *
26 (1-proxSensDist[0]/0.05)
27 }
28 if(proxSensDist[5]>(0.25 * 0.05)){
29 speedLeft = speedLeft+maxSpeed*braitSideSens_Motor[1] *
30 (1-proxSensDist[5]/0.05)
31 speedRight = speedRight+maxSpeed*braitSideSens_Motor[0] *
32 (1-proxSensDist[5]/0.05)
33 }
34 } else {
35 for(int i=0; i < braitFrontSens_Motor.length; i++){
36 speedLeft=speedLeft+maxSpeed*braitFrontSens_Motor[i] *
37 (1-proxSensDist[1+i]/0.05)
38 speedRight=speedRight+maxSpeed*braitFrontSens_Motor[3-i] *
39 (1-proxSensDist[1+i]/0.05)
40 }
41 }
42 }

Code 4.13.: Controller for the example application provided by V-REP as pseudo-code.

53

4.2.3. New controller

As the analysis of the existing controller in Section 4.2.2 shows, the detection and
avoidance of an object in front of the robot needs to be improved. Using Braitenberg,
to drive alongside the obstacle, is a very good solution and therefore should stay. The
problem of the current version is, that due to Braitenberg the robots can turn in the
same direction. So the first robot detects the other robot to its left (sensor 1 and 2 of
Figure 4.7) and starts turning to the right. The second robot detects the other robot
to its right (sensor 3 and 4) and starts turning left which leads to the situation shown
in Figure 4.6. To perfectly pass each other the robots should turn in different direction.
The initial turn of the robot should be always in the same direction, seen from the
direction of motion. This can either be a left or right turn. The important point is
that the obstacle is always on the same side for Braitenberg. Code 4.14 shows the
improved version of the controller as pseudo-code. Line 29 till 39 shows the improved
avoidance of an obstacle in front of the robot. If an obstacle is detected by one of the
two front sensors (sensor 2 and 3) the robot always does a turn to the left. With this
initial turn the Braitenberg avoidance will always behave the same way. Both robots
will continue turning to the left until sensor 3 and sensor 4 do not detect any obstacle.
Sensor 5 is then used to keep a safe distance to the obstacle while driving (line 22 till
27). Using the sensor 5, both robots will try to drive around the obstacle. As both are
moving, this ends up in a rotation which stops as soon as the robots detect a line and
start following it. Line 3 till 19 show the new line following algorithm. The section is
adapted to make the start of the line following more reliable. The changes are between
line 5 and 16. If the middle and right sensor detect a line, a more aggressive right turn
is performed then during the normal line following. The same happens if the middle
and left sensor detect the line, but now a left turn is made. If all ground sensors detect
the line a rotation to the left is done to make sure that the robot is able to get back on
the line. With these changes the robots are now able to pass each other, avoid other
none moving objects and follow the line.

54

1 double speedLeft = maxSpeed
2 double speedRight = maxSpeed
3 if(groundSensorValuesUpdated && lineDetected && !obstacleInFrontOfRobot){
4 // middle and right sensor detect the line => right turn
5 if((groundSensorValues[0] > 0.5 && groundSensorValues[1] < 0.5 &&
6 groundSensorValues[2] < 0.5)){
7 speedRight = -0.75 * maxSpeed
8 }//the middle and the left sensor detect the line => left turn
9 else if((groundSensorValues[0] < 0.5 && groundSensorValues[1] < 0.5 &&

10 groundSensorValues[2] > 0.5)){
11 speedLeft = -0.75 * maxSpeed
12 }//All sensors detect line => make left turn
13 else if(groundSensorValues[0] < 0.5 && groundSensorValues[1] < 0.5 &&
14 groundSensorValues[2] < 0.5) {
15 speedLeft = -1 * maxSpeed
16 }else{
17 if (groundSensorValues[0] < 0.5) { speedLeft = maxSpeed * 0.20 }
18 if (groundSensorValues[2] < 0.5) { speedRight = maxSpeed * 0.20 }
19 }
20 } else {
21 if(!obstacleInFrontOfRobot){
22 if(proxSensDist[5]>(0.25 * 0.05)){
23 speedLeft = speedLeft+maxSpeed*braitSideSens_Motor[1] *
24 (1-proxSensDist[5]/0.05)
25 speedRight = speedRight+maxSpeed*braitSideSens_Motor[0] *
26 (1-proxSensDist[5]/0.05)
27 }
28 } else {
29 if(proxSensDist[2] > (0.25 * 0.05) ||
30 proxSensDist[3] > (0.25 * 0.05)){
31 speedRight = maxVelocity
32 speedLeft = -1 * maxVelocity / 2
33 } else {
34 for(int i=0; i < braitFrontSens_Motor.length; i++){
35 speedLeft=speedLeft+maxSpeed*braitFrontSens_Motor[i] *
36 (1-proxSensDist[1+i]/0.05)
37 speedRight=speedRight+maxSpeed*braitFrontSens_Motor[3-i] *
38 (1-proxSensDist[1+i]/0.05)
39 }
40 }
41 }
42 }

Code 4.14.: Improved controller for the example application provided by V-REP as
pseudo-code.

55

5. Evaluation

This chapter covers the performance test of the framework, how I experienced the
framework while using it for the example application, the evaluation of the framework
for using it in the 5th semester and discusses the V-REP client/server separation.

5.1. Performance of the framework

The performance of the framework is a main factor for the simulation. If the
framework has a slow performance it can lead to an imprecise simulation when the
simulator is running in asynchronous mode. If the simulator is running in synchronous
mode it will be always precise. In the synchronous mode the simulator gets told how
many simulations steps it should make. After the simulator has done the amount of
steps it waits until it gets the instruction to perform the next simulation steps. This
part covers how performance testing is defined, how the performance of the framework
was tested and what the results are.

5.1.1. Definition of performance testing

On TechTarget it says, “Performance testing is the process of determining the speed or
effectiveness of a computer, network, software program or device. This process can
involve quantitative tests done in a lab, such as measuring the response time or the
number of MIPS (millions of instructions per second) at which a system functions.
Qualitative attributes such as reliability, scalability and interoperability may also be
evaluated. Performance testing is often done in conjunction with stress testing”.
“Performance testing can also be used as a diagnostic aid in locating communications
bottlenecks. Often a system will work much better if a problem is resolved at a single
point or in a single component. For example, even the fastest computer will function
poorly on today’s Web if the connection occurs at only 40 to 50 Kbps (kilobits per
second).” [32].

Software Testing Fundamentals defines performance testing as followed: “Performance
Testing is a type of software testing that intends to determine how a system performs
in terms of responsiveness and stability under a certain load.” [24].

“Performance testing, a non-functional testing technique performed to determine the
system parameters in terms of responsiveness and stability under various workload.
Performance testing measures the quality attributes of the system, such as scalability,
reliability and resource usage”, is the definition by TutorialsPoint [39].

56

Testing Performance defines performance testing as, “Performance Testing is associated
with a number of interchangeable names. The performance test can also referred to as
a stress test, load testing or volume testing and is the application of a process that
verifies the ability of a system to handle varying degrees of concurrent users and
system transactions. The Goals of performance testing are driven by a number of
factors that could include business volumetric requirements and service level
agreements (SLA) as well as perceived and actual performance risk.” [34].

For this thesis the performance testing is determining how long methods take to return
or set a value. The shorter the time passed between calling a method to get or set a
value the better the performance is.

5.1.2. Performance testing the framework

For the framework it is important that the method called which refresh or set a value
using the remote API, take as little time as possible. The time a method call takes is
crucial for how precise the robot can be controlled. Therefore, the testing shall give an
overview of how long the method calls take and also reveal where the bottlenecks are,
that can cause problems during controlling the robot. Following scenarios were tested:

• Test 01 - Requesting a sensor value by directly addressing the sensor

• Test 02 - Requesting a sensor value by getting all sensor values with one call

• Test 03 - Requesting two sensor values by directly addressing each sensor

• Test 04 - Requesting two sensor values by getting all sensor values with one call

• Test 05 - Requesting all sensor values with one call by using a thread

• Test 06 - Requesting the camera image and sensor values (all sensor values at once)
without threads

• Test 07 - Requesting the camera image by using a thread

• Test 08 - Only using threads to get sensor values and camera image

For profiling there are several software available on the market. Most of these require a
license but some also offer a period of trial use. Such a software, which requires a
license, is JProfiler [30]. This tool gives detail information on how long a method
execution takes. It also has a plugin for Intellij which makes the profiling easy. The
tool was used with the trial license that gives access for 10 days.

Java VisualVM is a profiling tool that comes with the Java framework and is free to
use. The tool shows how much time was spent in a method in total and how often the
method was called. The missing information the calls of the API methods. These do
not show up and therefore the use of this tool was stopped during the testing.

57

Figure 5.1.: Scene for performance test.

The main interest was on how long the execution of a method took, the use of the Java
method System.currentTimeMillis() can be used to determine the execution time [20].
The method returns the time difference between the 1st January 1970 00:00 UTC and
the current time. The time difference is given in milliseconds. By calling this method
before and after a method it is possible to determine how long the execution took.

To determine the performance the tool JProfiler and the Java method
System.currentTimeMillis() have been used. The scene for the test contains a line
which the robot follows, as shown in Figure 5.1. During testing the focus was on the
execution time of the methods which get the data from the simulator and if the robot
follows the line well. The chosen simulation mode in V-REP was the real-time mode.
In the real-time mode one second inside the simulator is also one second in the real
world. There are other modes were the simulation is adapted according to the system
the simulator is running on. These other modes try to keep the frame rate high to have
a smooth simulation but the time inside the simulator maybe pass faster than the time
in the real world.

5.1.3. Testing environment

The tests were run on a single hardware with an Intel i7-6700HQ, 16GB memory and
a Nvidia GeForce GTX 960M graphics card. V-REP uses the graphics card for the
rendering and handling of vision sensors [48]. During testing it was checked on which
core the simulator and the Java program were running. For the best test results both
programmes should run on different cores. The Java program was running on the same
core during a single test while the simulator switched between different cores. If both,

58

Figure 5.2.: Error during testing with threads.

the simulator and the Java program, were to run on the same core it could come to in
accurate test results due to high load on one single core, which slows it down.

5.1.4. Problems encountered during testing

During test 05, where the sensor values are updated by using a thread, immediately
after the start of the controller it came to a crash with the error message shown in
Figure 5.2.

According to this message, the most logical reason is that the API call of the thread
overlaps with the call to set the motor speed. As the calls worked for the previous
tests, where the calls were made sequentially the problem seems to be the API of the
simulator. A possible reason is that the simulator cannot handle multiple requests at
the same time for one robot. The company’s website however gives no information
about such a restriction. The problem was solved by using the synchronized statement
of java which was applied to all API method calls [19]. The synchronized statement
prevents the execution of a method from multiple threads at the same time so only one
thread at any given time can execute the method. Code 4.12 shows how the
synchronized statement is applied to the method call which sets the motor speed. The
object lockAPI is a simple object and is the intrinsic lock.

While making sure that the synchronization is applied to every API method call, I
came across an implementation error in the framework. The methods which return the
sensor value to the controller did not have synchronization, which is important when
the sensor values are updated in a thread. Using a thread to update the sensor values
can result in the thread updating the value while the controller accesses the value. To
prevent this situation, synchronization was added to all methods that return or update
a sensor value. To see if this change influences the API calls, the added
synchronization to all the API calling methods were removed. Running the same test
again the previous error did not appear. All the test were then run again with only the
synchronization for the methods which return or update the sensor values. During test
07 and 08 the error occurred again. Test 07 uses a thread to update the camera image
while the sensor value update is triggered by the controller. The threads only approach
is used in test 08. Sensor values and the camera image are updated in separate threads
in test 08. After checking the V-REP remote API documentation again, the problem
appeared to be the blocking API calls. Because of the threads, there is a possibility
that two API calls overlap and the API processes the call that arrived earlier and the
other gets the error message shown in Figure 5.2. By adding synchronization to all the
API calls the problem was solved.

59

5.1.5. Test results

• Test 01 - Requesting a sensor value by directly addressing the sensor

– Simulation run time: ca. 10min

– Average time to get ground sensor value from API (simxCallScriptFunction):
69.73ms

– Average time to set motor speed (simxCallScriptFunction): 70.12ms

– Average loop rung time: 139.94ms

Figure C.1 and C.2 show the results of this test.

• Test 02 - Requesting a sensor value by getting all sensor values with one call

– Simulation run time: ca. 10min

– Average time to get all sensor values from API (simxGetStringSignal): 0.05ms

– Average time to get ground sensor value: 0.001ms

– Average time to set motor speed (simxCallScriptFunction): 67.89ms

– Average loop rung time: 67.96ms

Figure C.3 and C.4 show the results of this test.

• Test 03 - Requesting two sensor values by directly addressing each sensor

– Simulation run time: ca. 10min

– Average time to get pose from API (simxCallScriptFunction): 69.46ms

– Average time to get ground sensor values from API (simxCallScriptFunction):
67.77ms

– Average time to set motor speed (simxCallScriptFunction): 68.58ms

– Average loop rung time: 205.86ms

Figure C.5 and C.6 show the results of this test.

• Test 04 - Requesting two sensor values by getting all sensor values with one call

– Simulation run time: ca. 10min

– Average time to get all sensor values from API (simxGetStringSignal): 0.05ms

– Average time to get proximity sensor values: 0.003ms

– Average time to get ground sensor values: 0.001ms

– Average time to set motor speed (simxCallScriptFunction): 72.65ms

– Average loop rung time: 72.71ms

Figure C.7 and C.8 show the results of this test.

• Test 05 - Requesting all sensor values with one call by using a thread

60

– Simulation run time: ca. 10min

– Average time to get all sensor values from API (simxGetStringSignal): 0.02ms

– Average time to get ground sensor values: 0.005ms

– Average time to set motor speed (simxCallScriptFunction): 71.09ms

– Average loop rung time: 71.11ms

Figure C.9 and C.10 show the results of this test.

• Test 06 - Requesting the camera image and sensor values (all sensor values at once)
without threads

– Simulation run time: ca. 10min

– Average time to get camera image from API (simxCallScriptFunction): 77.39ms

– Average time to get all sensor values from API (simxGetStringSignal): 0.04ms

– Average time to get ground sensor values: 0.002ms

– Average time to set motor speed (simxCallScriptFunction): 95.89ms

– Average loop rung time: 173.34ms

Figure C.11 and C.12 show the results of this test.

• Test 07 - Requesting the camera image by using a thread

– Simulation run time: ca. 10min

– Average time to get camera image from API (simxCallScriptFunction): 71.24ms

– Average time to get all sensor values from API (simxGetStringSignal): 0.01ms

– Average time to get camera image: 0.006ms

– Average time to get ground sensor values: 0.002ms

– Average time to set motor speed (simxCallScriptFunction): 71.33ms

– Average loop rung time: 83.19ms

Figure C.13 and C.14 show the results of this test.

• Test 08 - Only using threads to get sensor values and camera image

– Simulation run time: ca. 10min

– Average time to get camera image from API (simxCallScriptFunction): 71.46ms

– Average time to get all sensor values from API (simxGetStringSignal): 0.02ms

– Average time to get camera image: 0.004ms

– Average time to get ground sensor values: 0.001ms

– Average time to set motor speed (simxCallScriptFunction): 83.36ms

– Average loop rung time: 83.37ms

61

5.1.6. Analysing the test results

The tests show that there is a big difference in the performance between the remote
API methods simxCallScriptFunction and simxGetStringSignal. Using the remote API
method simxCallScriptFuntion to get or set a value will take about 72ms for each call.
A remote API call using the method simxGetStringSignal in comparison will take
about 0.02ms. For controlling a robot this makes a difference in terms how precise the
robot can be controlled. The website of V-REP does not give any information on why
there is such a big difference in the execution time for these methods. To make the
methods, which update a sensor value individually, usable without drawbacks in terms
of the response time, they need to be changed to simxGetStringSignal. This change has
not been done yet and is mention in the Chapter 6.

Using threads to get the values from the remote API makes the control loop in the
controller faster, as the controller does not have to wait for the response of the API.
The only limiting factor in a controller using threads is the setMotorSpeed since this
method uses simxCallScriptFuntion to set the speed.

Based on this test a controller has the best performance if threads are used for the
camera image and the sensor values. The sensor values should be requested all in one
call using senseAllTogether.

5.2. Own experience

For the example application I used the framework like the students in the 5th semester
would use it. A feature I really liked during the development process was the step
simulation. It helped me to learn what value range the different sensors return. Being
able to debug the controller and having the simulation stopped makes a precise
analysis of the controller possible. This is the feature that I would have liked for
building my first controllers. To update the values I used the method which updates
all sensor values in one call. This is the most logic approach, in my opinion, as all
values should represent the same time frame to be able to make decisions. The
automatically loading of the remote API library worked without any problem. This
feature of the framework removes a potential error source while developing.

5.3. Evaluation for the 5th semester

Comparing the framework of Webots with this framework I cannot see differences
which could cause troubles for 5th semester students. The developed framework
features all the functionality that is available in Python. In the Masters program the
Python framework is already successfully in use. The only problem that occurred often
in the Masters program was that the remote API library was not loaded. This problem
is solved with the Java framework and the students do not need to worry about it and

62

can fully focus on the development of the controller. With the example application and
the framework documentation as JavaDoc the students can check how to use the
framework. The example application illustrates how the framework is used and with
the JavaDoc they can check the methods of the classes.

5.4. Client / Server separation

Comparing the process of simulating between V-REP and Webots I did not recognize
any disadvantages. For me the development was easier with V-REP then it was with
Webots. With Webots I used to develop the controller with Intellij and then had to
copy the output files to another directory. I switched to another integrated
development environment (IDE) to develop the controller because the controller editor
in Webots was very minimalistic. With V-REP you just start the simulation in V-REP
and after that you run the controller from the IDE of your choice. The separation of
client and server also gives new opportunities during the lectures. For example
presenting the exercises during the lecture gets easier. With Webots every student
needs to connect their notebook to the projector, which time consuming. With V-REP
the lecturer can start the simulator on his notebook. They then give the students the
IP-address of their machine so they can set-up the connection to the remote API. Each
student can then run the controller on their machine and control the robot in the
simulator running on the lecturer’s notebook. With this set-up it is also possible to
make competitions. By adding robots to the simulation of the lecturer multiple
students can run their controllers at the same time.

63

6. Future work

The current version of the framework only allows controlling the virtual robot of
V-REP. Future work can extend the framework with the possibility to control the real
version of the robot e-Puck. Furthermore, the Lua script of the virtual e-Puck can be
modified. The script has to be changed to enable the use of the remote API method
simxGetStringSignal for all calls.

64

Bibliography

[1] Aurélien. This code provide tools for command and get status E-Puck robot in
V-Rep simulation tool.: AurelienC/vrep-java-epuck-interface. original-date: 2017-
05-03T20:58:19Z. May 3, 2017. url: https://github.com/AurelienC/vrep-
java-epuck-interface (visited on 09/20/2018).

[2] BlueZero.Middleware for distributed applications. Contribute to blueworkforce/bluezero
development by creating an account on GitHub. original-date: 2017-10-05T07:44:08Z.
Aug. 21, 2018. url: https://github.com/blueworkforce/bluezero (visited on
08/30/2018).

[3] cambridge oop definition. object-oriented Meaning in the Cambridge English Dic-
tionary. Aug. 16, 2018. url: https://dictionary.cambridge.org/dictionary/
english/object-oriented (visited on 08/16/2018).

[4] e-puck eduaction robot. e-puck education robot. Aug. 17, 2018. url: http://www.
e-puck.org/ (visited on 08/17/2018).

[5] ePuck: Spirit of the e-puck project. Project. Aug. 28, 2018. url: http://www.e-
puck.org/index.php?option=com_content&view=article&id=6&Itemid=3
(visited on 08/28/2018).

[6] ePuck: wiki. e-puck2 - GCtronic wiki. Aug. 28, 2018. url: http://www.gctronic.
com/doc/index.php/e-puck2 (visited on 08/28/2018).

[7] ePuck2. e-puck2. Feb. 28, 2018. url: http://www.e-puck.org/index.php?
option=com_content&view=article&id=55&Itemid=42 (visited on 08/28/2018).

[8] T Ryan Fitz-Gibbon. “Brooks’ Subsumption Architecture”. In: (), p. 19. url:
https://pdfs.semanticscholar.org/presentation/6c4d/f7e9dcd023c74fab72e22c8e51cd9ef7ef3f.
pdf.

[9] GeeksforGeeks. Adapter Pattern. GeeksforGeeks. May 3, 2016. url: https://
www.geeksforgeeks.org/adapter-pattern/ (visited on 07/28/2018).

[10] General Information. url: https://cs.uwaterloo.ca/~gweddell/cs446/ (vis-
ited on 08/20/2018).

[11] JAI doc ParameterBlock. ParameterBlock (Java Platform SE 7). Aug. 15, 2018.
url: https://docs.oracle.com/javase/7/docs/api/java/awt/image/
renderable/ParameterBlock.html (visited on 08/15/2018).

[12] JAI RenderedImage. RenderedImage (Java Platform SE 7). Aug. 15, 2018. url:
https://docs.oracle.com/javase/7/docs/api/java/awt/image/RenderedImage.
html (visited on 08/15/2018).

65

https://github.com/AurelienC/vrep-java-epuck-interface
https://github.com/AurelienC/vrep-java-epuck-interface
https://github.com/blueworkforce/bluezero
https://dictionary.cambridge.org/dictionary/english/object-oriented
https://dictionary.cambridge.org/dictionary/english/object-oriented
http://www.e-puck.org/
http://www.e-puck.org/
http://www.e-puck.org/index.php?option=com_content&view=article&id=6&Itemid=3
http://www.e-puck.org/index.php?option=com_content&view=article&id=6&Itemid=3
http://www.gctronic.com/doc/index.php/e-puck2
http://www.gctronic.com/doc/index.php/e-puck2
http://www.e-puck.org/index.php?option=com_content&view=article&id=55&Itemid=42
http://www.e-puck.org/index.php?option=com_content&view=article&id=55&Itemid=42
https://pdfs.semanticscholar.org/presentation/6c4d/f7e9dcd023c74fab72e22c8e51cd9ef7ef3f.pdf
https://pdfs.semanticscholar.org/presentation/6c4d/f7e9dcd023c74fab72e22c8e51cd9ef7ef3f.pdf
https://www.geeksforgeeks.org/adapter-pattern/
https://www.geeksforgeeks.org/adapter-pattern/
https://cs.uwaterloo.ca/~gweddell/cs446/
https://docs.oracle.com/javase/7/docs/api/java/awt/image/renderable/ParameterBlock.html
https://docs.oracle.com/javase/7/docs/api/java/awt/image/renderable/ParameterBlock.html
https://docs.oracle.com/javase/7/docs/api/java/awt/image/RenderedImage.html
https://docs.oracle.com/javase/7/docs/api/java/awt/image/RenderedImage.html

[13] Java Advanced Imaging Oracle. Java Advanced Imaging API Home Page. Aug. 15,
2018. url: https://www.oracle.com/technetwork/java/iio-141084.html
(visited on 08/15/2018).

[14] Java Oracle BufferedImage. BufferedImage (Java Platform SE 7). Aug. 15, 2018.
url: https://docs.oracle.com/javase/7/docs/api/java/awt/image/
BufferedImage.html (visited on 08/15/2018).

[15] Marcos Diego Catalano. Catalano-Framework: Framework. original-date: 2013-
08-24T16:59:48Z. Aug. 4, 2018. url: https://github.com/DiegoCatalano/
Catalano-Framework (visited on 08/15/2018).

[16] Francesco Mondada et al. “The e-puck, a Robot Designed for Education in Engi-
neering”. In: (Aug. 28, 2018), p. 7.

[17] Open CV documentation. Overview (OpenCV 3.4.2 Java documentation). Aug. 15,
2018. url: https://docs.opencv.org/3.4/javadoc/index.html (visited on
08/15/2018).

[18] OpenCV. OpenCV library. Aug. 15, 2018. url: https://opencv.org/ (visited on
08/15/2018).

[19] Oracle. Intrinsic Locks and Synchronization (The JavaTM Tutorials > Essential
Classes > Concurrency). url: https://docs.oracle.com/javase/tutorial/
essential/concurrency/locksync.html (visited on 07/24/2018).

[20] Oracle. System (Java Platform SE 7). url: https : / / docs . oracle . com /
javase/7/docs/api/java/lang/System.html#currentTimeMillis() (visited
on 07/24/2018).

[21] Python multiple inheritance. 9. Classes — Python 2.7.15 documentation. url:
https://docs.python.org/2/tutorial/classes.html#multiple-inheritance
(visited on 09/11/2018).

[22] ROS. ROS.org | About ROS. Aug. 30, 2018. url: http://www.ros.org/about-
ros/ (visited on 08/30/2018).

[23] R.G. Simmons. “Structured control for autonomous robots”. In: IEEE Transactions
on Robotics and Automation 10.1 (Feb. 1994), pp. 34–43. issn: 1042296X. doi:
10.1109/70.285583. url: http://ieeexplore.ieee.org/document/285583/
(visited on 09/12/2018).

[24] Software_testing_fundamentals. Performance Testing. Software Testing Funda-
mentals. July 15, 2013. url: http : / / softwaretestingfundamentals . com /
performance-testing/ (visited on 07/24/2018).

[25] Solution 1: Control Loop. url: https://www.cs.cmu.edu/~ModProb/MRsol1.
html (visited on 08/19/2018).

[26] Solution 2: Layered Architecture. url: https://www.cs.cmu.edu/~ModProb/
MRsol2.html (visited on 08/19/2018).

66

https://www.oracle.com/technetwork/java/iio-141084.html
https://docs.oracle.com/javase/7/docs/api/java/awt/image/BufferedImage.html
https://docs.oracle.com/javase/7/docs/api/java/awt/image/BufferedImage.html
https://github.com/DiegoCatalano/Catalano-Framework
https://github.com/DiegoCatalano/Catalano-Framework
https://docs.opencv.org/3.4/javadoc/index.html
https://opencv.org/
https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html
https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#currentTimeMillis()
https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#currentTimeMillis()
https://docs.python.org/2/tutorial/classes.html#multiple-inheritance
http://www.ros.org/about-ros/
http://www.ros.org/about-ros/
http://dx.doi.org/10.1109/70.285583
http://ieeexplore.ieee.org/document/285583/
http://softwaretestingfundamentals.com/performance-testing/
http://softwaretestingfundamentals.com/performance-testing/
https://www.cs.cmu.edu/~ModProb/MRsol1.html
https://www.cs.cmu.edu/~ModProb/MRsol1.html
https://www.cs.cmu.edu/~ModProb/MRsol2.html
https://www.cs.cmu.edu/~ModProb/MRsol2.html

[27] Solution 3: Implicit Invocation. url: https://www.cs.cmu.edu/~ModProb/
MRsol3.html (visited on 08/19/2018).

[28] Solution 4: Blackboard Architecture. url: https://www.cs.cmu.edu/~ModProb/
MRsol4.html (visited on 08/19/2018).

[29] Task Control Architecture. url: http://www.cs.cmu.edu/~TCA/tca.orig.html
(visited on 08/24/2018).

[30] ej-technologies. Java Profiler - JProfiler. url: https://www.ej-technologies.
com/products/jprofiler/overview.html (visited on 07/24/2018).

[31] Techtarget.What is object-oriented programming (OOP)? - Definition from WhatIs.com.
url: https://searchmicroservices.techtarget.com/definition/object-
oriented-programming-OOP (visited on 04/03/2018).

[32] Techtarget-Performance_Testing. What is performance testing? - Definition from
WhatIs.com. SearchSoftwareQuality. url: https://searchsoftwarequality.
techtarget.com/definition/performance-testing (visited on 07/24/2018).

[33] Techterms.OOP (Object-Oriented Programming) Definition. url: https://techterms.
com/definition/oop (visited on 04/03/2018).

[34] Testing_Performance. What is Performance Testing - definitions - Testing Per-
formance. url: http://www.testingperformance.org/definitions/what-is-
performance-testing (visited on 07/24/2018).

[35] Timer (Java Platform SE 7). Timer (Java Platform SE 7). 2018. url: https:
//docs.oracle.com/javase/7/docs/api/java/util/Timer.html (visited on
07/30/2018).

[36] TimerTask (Java Platform SE 7). TimerTask (Java Platform SE 7). 2018. url:
https://docs.oracle.com/javase/7/docs/api/java/util/TimerTask.html
(visited on 07/30/2018).

[37] tutorialspoint.com. Design Patterns Observer Pattern. www.tutorialspoint.com.
2018. url: https://www.tutorialspoint.com/design_pattern/observer_
pattern.htm (visited on 07/29/2018).

[38] tutorialspoint.com. OpenCV Reading Images. www.tutorialspoint.com. Aug. 15,
2018. url: https : / / www . tutorialspoint . com / opencv / opencv _ reading _
images.htm (visited on 08/15/2018).

[39] tutorialspoint.com. Performance Testing. www.tutorialspoint.com. url: https:
//www.tutorialspoint.com/software_testing_dictionary/performance_
testing.htm (visited on 07/24/2018).

[40] University of Sussex - AI Lecture: Braitenberg Vehicles. AI Lecture: Braitenberg
Vehicles. url: http://users.sussex.ac.uk/~christ/crs/kr-ist/lecx1a.
html (visited on 09/06/2018).

[41] University Waterloo. Mobile Robots: A case study on architectural styles. Oct. 9,
2018. url: https://cs.uwaterloo.ca/~gweddell/cs446/ArchCase.pdf.

67

https://www.cs.cmu.edu/~ModProb/MRsol3.html
https://www.cs.cmu.edu/~ModProb/MRsol3.html
https://www.cs.cmu.edu/~ModProb/MRsol4.html
https://www.cs.cmu.edu/~ModProb/MRsol4.html
http://www.cs.cmu.edu/~TCA/tca.orig.html
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html
https://searchmicroservices.techtarget.com/definition/object-oriented-programming-OOP
https://searchmicroservices.techtarget.com/definition/object-oriented-programming-OOP
https://searchsoftwarequality.techtarget.com/definition/performance-testing
https://searchsoftwarequality.techtarget.com/definition/performance-testing
https://techterms.com/definition/oop
https://techterms.com/definition/oop
http://www.testingperformance.org/definitions/what-is-performance-testing
http://www.testingperformance.org/definitions/what-is-performance-testing
https://docs.oracle.com/javase/7/docs/api/java/util/Timer.html
https://docs.oracle.com/javase/7/docs/api/java/util/Timer.html
https://docs.oracle.com/javase/7/docs/api/java/util/TimerTask.html
https://www.tutorialspoint.com/design_pattern/observer_pattern.htm
https://www.tutorialspoint.com/design_pattern/observer_pattern.htm
https://www.tutorialspoint.com/opencv/opencv_reading_images.htm
https://www.tutorialspoint.com/opencv/opencv_reading_images.htm
https://www.tutorialspoint.com/software_testing_dictionary/performance_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/performance_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/performance_testing.htm
http://users.sussex.ac.uk/~christ/crs/kr-ist/lecx1a.html
http://users.sussex.ac.uk/~christ/crs/kr-ist/lecx1a.html
https://cs.uwaterloo.ca/~gweddell/cs446/ArchCase.pdf

[42] V-REP add-ons. Add-ons. Aug. 30, 2018. url: http://www.coppeliarobotics.
com/helpFiles/en/addOns.htm (visited on 08/30/2018).

[43] V-REP embedded scripts. Embedded scripts. Aug. 30, 2018. url: http://www.
coppeliarobotics.com/helpFiles/en/scripts.htm (visited on 08/30/2018).

[44] V-REP main client application. The main client application. Aug. 30, 2018. url:
http://www.coppeliarobotics.com/helpFiles/en/mainClientApplication.
htm (visited on 08/30/2018).

[45] V-REP Plugins. Plugins. 2008. url: http : / / www . coppeliarobotics . com /
helpFiles/en/plugins.htm (visited on 08/30/2018).

[46] V-REP remote API modus operandi. Remote API modus operandi. url: http:
//www.coppeliarobotics.com/helpFiles/en/remoteApiModusOperandi.htm
(visited on 08/30/2018).

[47] V-REP_API_Frameworks. V-REP API framework. Aug. 16, 2018. url: http:
//www.coppeliarobotics.com/helpFiles/en/apisOverview.htm (visited on
08/16/2018).

[48] V-Rep-GPU_usage. V-REP’s GPU usage - V-REP Forum. url: http://www.
forum.coppeliarobotics.com/viewtopic.php?t=1113 (visited on 07/26/2018).

[49] V-Rep-licensing. Coppelia Robotics V-REP: Create. Compose. Simulate. Any Robot:
Educational Licensing. url: http://www.coppeliarobotics.com/educational-
licensing.html (visited on 04/17/2018).

[50] V-Rep-main. Coppelia Robotics V-REP: Create. Compose. Simulate. Any Robot.
url: http://www.coppeliarobotics.com/ (visited on 04/17/2018).

[51] V-Rep-remote_API_overview. Remote API. url: http://www.coppeliarobotics.
com/helpFiles/en/remoteApiOverview.htm (visited on 04/17/2018).

[52] V-Rep-writing_code. Writing code in and around V-REP. url: http://www.
coppeliarobotics.com/helpFiles/en/writingCode.htm#sixMethods (visited
on 04/17/2018).

[53] Webots-cpp_java_python.Webots documentation: C++/Java/Python. url: https:
//www.cyberbotics.com/doc/guide/cpp-java-python (visited on 04/17/2018).

[54] Webots-main_page. Webots: robot simulator. url: https://www.cyberbotics.
com/#webots (visited on 04/17/2018).

[55] Webots-prices. Webots: buy. url: https://www.cyberbotics.com/buy (visited
on 04/17/2018).

[56] Webots_using_java.Webots documentation: Using Java. Nov. 9, 2018. url: https:
//www.cyberbotics.com/doc/guide/using-java (visited on 09/11/2018).

68

http://www.coppeliarobotics.com/helpFiles/en/addOns.htm
http://www.coppeliarobotics.com/helpFiles/en/addOns.htm
http://www.coppeliarobotics.com/helpFiles/en/scripts.htm
http://www.coppeliarobotics.com/helpFiles/en/scripts.htm
http://www.coppeliarobotics.com/helpFiles/en/mainClientApplication.htm
http://www.coppeliarobotics.com/helpFiles/en/mainClientApplication.htm
http://www.coppeliarobotics.com/helpFiles/en/plugins.htm
http://www.coppeliarobotics.com/helpFiles/en/plugins.htm
http://www.coppeliarobotics.com/helpFiles/en/remoteApiModusOperandi.htm
http://www.coppeliarobotics.com/helpFiles/en/remoteApiModusOperandi.htm
http://www.coppeliarobotics.com/helpFiles/en/apisOverview.htm
http://www.coppeliarobotics.com/helpFiles/en/apisOverview.htm
http://www.forum.coppeliarobotics.com/viewtopic.php?t=1113
http://www.forum.coppeliarobotics.com/viewtopic.php?t=1113
http://www.coppeliarobotics.com/educational-licensing.html
http://www.coppeliarobotics.com/educational-licensing.html
http://www.coppeliarobotics.com/
http://www.coppeliarobotics.com/helpFiles/en/remoteApiOverview.htm
http://www.coppeliarobotics.com/helpFiles/en/remoteApiOverview.htm
http://www.coppeliarobotics.com/helpFiles/en/writingCode.htm#sixMethods
http://www.coppeliarobotics.com/helpFiles/en/writingCode.htm#sixMethods
https://www.cyberbotics.com/doc/guide/cpp-java-python
https://www.cyberbotics.com/doc/guide/cpp-java-python
https://www.cyberbotics.com/#webots
https://www.cyberbotics.com/#webots
https://www.cyberbotics.com/buy
https://www.cyberbotics.com/doc/guide/using-java
https://www.cyberbotics.com/doc/guide/using-java

Statuatory Declaration

I declare that I have developed and written the enclosed work completely by myself,
and have not used sources or means without declaration in the text. Any thoughts from
others or literal quotations are clearly marked. This Bachelor Thesis was not used in
the same or in a similar version to achieve an academic degree nor has it been published
elsewhere.

Dornbirn, at 12.10.2018 Daniel Thomas Groß

69

Appendices

70

A. Code snippets of section 4.1.1

/**
*Register as observer for the sensor values to get updates.
* @param observer
*/
public void registerSensorObserver(SensorObserver observer){

_sensorObservers.add(observer);
}

/**
* Unregister from the observer list.
* @param observer
*/
public void unregisterSensorObserver(SensorObserver observer){

_sensorObservers.remove(observer);
}

/**
* Notify all observers about a the change of sensor values by
* giving them a list of all sensors that have changed.
* @param sensors
*/
protected void notifySensorObservers(LinkedList<Sensor> sensors){

for (SensorObserver observer: _sensorObservers) {
observer.sensorValuesChanged(sensors);

}
}

Code A.1.: Methods of the class DifferentialWheels to handle sensor observer

71

/**
* Register as observer for camera image to get updates.
* @param observer
*/
public void registerCameraImageObserver(CameraImageObserver observer){

_cameraImageObservers.add(observer);
}

/**
* Unregister from the observer list.
* @param observer
*/
public void unregisterCameraImageObserver(CameraImageObserver observer){

_cameraImageObservers.remove(observer);
}

/**
* Notify all observers that the camera image has changed by
* sending them the current image.
* @param cameraImage
*/
protected void notifyCameraImageObservers(CameraImage cameraImage){

for (CameraImageObserver observer: _cameraImageObservers) {
observer.cameraImageChanged(cameraImage);

}
}

Code A.2.: Methods of the class DifferentialWheels to handle image observers

72

B. Code snippets of section 4.1.3.1

public static void loadLibrary(){
if(OSValidator.isWindows()){

if(OSValidator.isWindows64Bit()) {
loadLib("Windows"+File.separator+"64Bit"+File.separator

+LIBREMOTEAPIJAVA+".dll","dll");
} else {

loadLib("Windows"+File.separator+"32Bit"+File.separator
+LIBREMOTEAPIJAVA+".dll","dll");

}
} else if(OSValidator.isMac()){

loadLib("Mac"+File.separator+LIBREMOTEAPIJAVA+".dylib","dylib");
} else if(OSValidator.isUnix() || OSValidator.isSolaris()){

if(OSValidator.isLinux64Bit()) {
loadLib("Linux"+File.separator+"64Bit"+File.separator

+LIBREMOTEAPIJAVA+".so","so");
} else {

loadLib("Linux"+File.separator+"32Bit"+File.separator
+LIBREMOTEAPIJAVA+".so","so");

}
} else {

System.out.println("Error: Unknown Operating System!!");
}

}

Code B.1.: Method "loadLibrary()" of the class LibraryLoader

73

public static boolean isWindows() {
return (OS.indexOf("win") >= 0);

}

public static boolean isWindows64Bit(){
if(windowsArch != null){

System.out.println(windowsArch);
}
if(windowsWow64Arch != null){

System.out.printf(windowsWow64Arch);
}
return (windowsArch != null && windowsArch.endsWith("64"))

|| (windowsWow64Arch != null
&& windowsWow64Arch.endsWith("64")) ? true : false;

}

Code B.2.: Methods of OSValidator to detect a Windows OS and the architecture type.

public static boolean isUnix() {
return (OS.indexOf("nix") >= 0 || OS.indexOf("nux") >= 0

|| OS.indexOf("aix") > 0);
}

public static boolean isLinux64Bit(){
return System.getProperty("os.arch").endsWith("64")? true : false;

}

public static boolean isSolaris() {
return (OS.indexOf("sunos") >= 0);

}

Code B.3.: Methods of OSValidator to detect Linux systems.

public static boolean isMac() {
return (OS.indexOf("mac") >= 0);

}

Code B.4.: Method of OSValidator to detect MacOS.

74

public class remoteApi
{

static{
System.loadLibrary("remoteApiJava");

}
/*
*
*
*/

}

Code B.5.: Original version of the class remoteAPI.java

public class remoteApi
{

static{
//Load the correct library for the current OS
LibraryLoader.loadLibrary();

}
/*
*
*
*/

}

Code B.6.: Modified version of the class remoteAPI.java

75

C. Figures of the performance
testing results

76

Figure C.1.: JProfiler results for test 01.

Figure C.2.: Results for test 01 using the Java system method.

77

Figure C.3.: JProfiler results for test 02.

Figure C.4.: Results for test 02 using the Java system method.

78

Figure C.5.: JProfiler results for test 03.

Figure C.6.: Results for test 03 using the Java system method.

79

Figure C.7.: JProfiler results for test 04.

Figure C.8.: Results for test 04 using the Java system method.

80

Figure C.9.: JProfiler results for test 05.

Figure C.10.: Results for test 05 using the Java system method.

81

Figure C.11.: JProfiler results for test 06.

Figure C.12.: Results for test 06 using the Java system method.

82

Figure C.13.: JProfiler results for test 07.

Figure C.14.: Results for test 07 using the Java system method.

83

Figure C.15.: JProfiler results for test 08.

Figure C.16.: Results for test 08 using the Java system method.

84

	List of figures
	Introduction
	Problem Statement
	Aim of the Work
	Methodological Approach

	State of the art
	Controlling a robot
	Architectures to control a robot
	Why a framework?
	Real robot vs simulated robot

	The robot e-Puck
	Virtual e-Puck of V-REP

	Simulators V-REP and Webots
	Webots
	V-REP

	Python framework
	DifferentialWheels
	EPuck
	EPuckVRep
	EPuckReal

	Java
	Existing libraries for the robot e-Puck for V-REP
	Camera image
	Java API provided by V-REP

	Comparison Java and Python 2.7
	Object Oriented Programming
	Comparison
	Basic classes
	Inheritance
	Interfaces
	Abstract classes

	Requirements
	Implementation
	Framework
	DifferentialWheels
	EPuck
	EPuckVRep
	Loading the remote API library
	Reading the sensor values
	Getting the camera image
	Setting the motor speed

	Example application
	Problem
	Analysing the existing controller
	New controller

	Evaluation
	Performance of the framework
	Definition of performance testing
	Performance testing the framework
	Testing environment
	Problems encountered during testing
	Test results
	Analysing the test results

	Own experience
	Evaluation for the 5th semester
	Client / Server separation

	Future work
	Bibliography
	Statuatory Declaration
	Appendices
	Code snippets of section 4.1.1
	Code snippets of section 4.1.3.1
	Figures of the performance testing results

